Skip to main content

Receptor-Directed Molecular Conjugates for Gene Transfer

  • Protocol
Gene Therapy Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 69))

Abstract

To circumvent the safety limitations of viral vectors and the cytotoxicity of liposomal carriers, several investigators have used receptor-targeted molecular conjugates to direct gene transfer into mammalian cells in vitro (126), and in vivo (2740). This method has potential for human gene therapy, once it is perfected in animal models. DNA, noncovalently bound to a poly cation polymer that is chemically conjugated to a ligand, can be bound to the cell surface and internalized. Various ligands have been used to target cell surface receptors for gene delivery. Some of these receptors (e.g., the asialoglycoprotein receptor [reviewed in ref. 41)] are designed to traffic their cargo to degradation in the lysosomes, whereas other receptors recycle to the cell surface (e.g., trans-ferrin receptor [reviewed in ref. 42)] or transport their ligands across the cell (e.g., polymeric immunoglobulin receptor [reviewed in ref. 43)]. Success is enhanced if the receptor displays high specificity for a ligand but low selectivity for attached cargo, constitutive, abundant expression and the capability for bulk uptake. Receptor-directed molecular conjugates have advantages as gene therapy reagents. Receptor targeting confers specificity, immunogenicity is normally low for the polycation and DNA and variable for the ligand, and the packaging capacity is quite large (44), allowing for the inclusion of native promoters or intronic sequences that will enhance gene expression (45). To understand the methods used in receptor-mediated molecular conjugate gene transfer, we must first review the use of such receptors, which have provided specificity in the context of a noninfectious and nontoxic vector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu G. Y. and Wu C. H. (1987) Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J. Biol. Chem. 262, 4429–4432.

    PubMed  CAS  Google Scholar 

  2. Zatoukal K., Wagner E., Cotten M., et al. (1992) Transferrinfection: a highly efficient way to express gene constructs in eukaryotic cells. Ann. N. Y. Acad. Sci. 660, 136–153.

    Article  Google Scholar 

  3. Ferkol T., Kaetzel C. S., and Davis P. B. (1993) Gene transfer into respiratory epithelial cells by targeting the polymeric immunoglobulin receptor. J. Clin. Invest. 92, 2394–2400.

    Article  PubMed  CAS  Google Scholar 

  4. Monsigny M., Roche A. C., Midoux P., and Mayer R. (1994) Glycoconjugates as carriers for specific delivery of therapeutic drugs and genes. Adv. Drug. Delivery Rev. 14, 1–24.

    Article  CAS  Google Scholar 

  5. Midoux P., Mendes C., Legrand A., et al. (1993) Specific gene transfer mediated by lactosylated poly-L-lysine into hepatoma cells. Nucleic Acids Res. 21, 871–878.

    Article  PubMed  CAS  Google Scholar 

  6. Chen J., Stickles R. J., and Daiscendt K. A. (1994) Galactosylated histone-me-diated gene transfer and expression. Hum. Gene Ther. 5, 429–435.

    Article  PubMed  Google Scholar 

  7. Perales J. C., Grossmann G. A., Molas M., et al. (1997) Biochemical and functional characterization of DNA complexes capable of targeting genes to hepato-cytes via the asialoglycoprotein receptor. J. Biol. Chem. 272, 7398–7407.

    Article  PubMed  CAS  Google Scholar 

  8. Erbacher P., Bousser M. T., Raimond J., et al. (1996) Gene transfer by DNA/ glycosylated polylysine complexes into human blood monocyte derived macroph-ages. Hum. Gene Ther. 7, 721–729.

    Article  PubMed  CAS  Google Scholar 

  9. Schwarzenberger P., Spence S. E., Gooya J.M., et al. (1996) Targeted gene transfer to human hematopoietic progenitor cell lines through the c-kit receptor. Blood 87, 472–478.

    PubMed  CAS  Google Scholar 

  10. Ross G. F., Morris R. E., Ciraolo G., et al. (1995) Surfactant proteinA-polyl-ysine conjugates for delivery of DNA to airway cells in culture. Hum. Gene Ther. 6, 31–40.

    Article  PubMed  CAS  Google Scholar 

  11. Hart S. L., Harbottle R. P., Cooper R., et al. (1995) Gene delivery and expression mediated by an integrin-binding peptide. Gene Ther. 2, 552–554.

    PubMed  CAS  Google Scholar 

  12. Ziady A., Perales J. C., Ferkol T., et al. (1997) Gene transfer into hepatocyte cell lines via the serpin enzyme complex (SEC) receptor. Am. J. Physiol. 273, G545–G552.

    PubMed  CAS  Google Scholar 

  13. Ziady A., Ferkol T., Gerken T., et al. (1998) Ligand substitution of receptor targeted DNA complexes affects gene transfer into hepatoma cells. Gene Ther. 5, 1685–1697.

    Article  PubMed  CAS  Google Scholar 

  14. Batra R. K., Wang-Johanning F., Wagner E., Garver R. I., and Curiel D. T. (1994) Receptor-mediated gene delivery employing lectin-binding specificity. Gene Ther. 1, 255–260.

    PubMed  CAS  Google Scholar 

  15. Rojanasakul Y., Wang L. J., Malanga C. J., Ma J. K. H., and Liaw J. H. (1994) Targeted gene delivery to alveolar macrophages via Fc receptor-mediated endocy-tosis. Pharm. Res. 11, 1731–1736.

    Article  PubMed  CAS  Google Scholar 

  16. Gottschalk S., Christiano R. J., Smith L. C., and Woo S. L. (1994) Folate receptor mediated DNA delivery into tumor cells: potosomal disruption results in enhanced gene expression. Gene Ther. 1, 185–191.

    PubMed  CAS  Google Scholar 

  17. Buschle M., Cotten M., Kirlappos H., et al. (1995) Receptor-mediated gene transfer into human T lymphocytes via binding of DNA/CD3 antibody particles to the CD3 T cell receptor complex. Hum. Gene Ther. 6, 753–761.

    Article  PubMed  CAS  Google Scholar 

  18. Cotten M., Wagner E., and Birnstiel M. L. (1993) Receptor-mediated transport of DNA into eukaryotic cells. Methods Enzymol. 217, 618–644.

    Article  PubMed  CAS  Google Scholar 

  19. Thurher M., Wagner E., Clausen H., et al. (1990) Carbohydrate receptor mediated gene transfer to human T leukemic cells. Glycobiology. 4, 429–435.

    Article  Google Scholar 

  20. Wagner E., Curiel D. T., and Cotten M. (1994) Delivery of drugs, proteins, and genes into cells using transferrin as a ligand for receptor-mediated endocytosis. Adv. Drug. Del. Rev. 14, 113–135.

    Article  CAS  Google Scholar 

  21. Wagner E., Zenke M., Cotten M., Beug H., and Birnstiel M. L. (1990) Trans-ferrin-polycation conjugates as carriers for DNA uptake into cells. Proc. Natl. Acad. Set USA 87, 3410–3414.

    Article  CAS  Google Scholar 

  22. Gottschalk S., Sparrow J. T., Hauer J., et al. (1996) Synthetic vehicles for efficient gene transfer and expression in mammalian cells. Gene Ther. 3, 448–457.

    PubMed  CAS  Google Scholar 

  23. Ferkol T., Perales J. C., Mularo F., and Hanson R. W. (1996) Receptor-mediated gene transfer into macrophages. Proc. Natl. Acad. Sci. USA 93, 101–105.

    Article  PubMed  CAS  Google Scholar 

  24. Zenke M., Steinlein P., Wagner E., et al. (1990) Receptor-mediated endocytosis of transferrin-polycation conjugates: an efficient way to introduce DNA into hematopoietic cells. Proc. Natl. Acad. Sci. USA 87, 3655–3659.

    Article  PubMed  CAS  Google Scholar 

  25. Chen J., Gamau S., Takayanagi A., and Shimizu N. (1994) A novel gene delivery system using EGF receptor-mediated endocytosis. FEBS Lett. 338, 167–169.

    Article  PubMed  CAS  Google Scholar 

  26. Chen S. Y., Zani C., Khouri Y., and Marasco W. A. (1995) Design of a genetic immunotoxin to eliminate immunogenicity. Gene Ther. 2, 116–123.

    PubMed  CAS  Google Scholar 

  27. Wu C. H., Wilson J. M., and Wu G. Y. (1989) Targeting genes: delivery and persistent expression of a foreign gene driven by mammalian regulator elements in vivo. J. Biol. Chem. 264, 16985–16987.

    CAS  Google Scholar 

  28. Wu G. Y., Wilson J. M., Shalaby F., et al. (1991) Receptor-mediated gene delivery in vivo: partial correction of genetic analbuminemia in Nagase rats. J. Biol.Chem. 266, 14338–14342.

    PubMed  CAS  Google Scholar 

  29. Wilson J. M., Grossman M., Wu C. H., et al. (1992) Hepatocyte-directed gene transfer in vivo leads to transient improvement of hypercholesterolemia in low-density lipoprotein receptor-deficient rabbits. J. Biol. Chem. 267, 963–967.

    PubMed  CAS  Google Scholar 

  30. Perales J. C., Ferkol T., Beegen H, Ratnoff O. D., and Hanson R. W. (1994) Gene transfer in vivo: Sustained expression and regulation of genes introduced into the livers by receptor targeted uptake. Proc. Natl. Acad. Sci. USA 91, 4086–4090.

    Article  PubMed  CAS  Google Scholar 

  31. Chowdhury N. R., Wu C. H., Wu G. Y., et al. (1993) Fate of DNA targeted to the liver by asialoglycoprotein receptor-mediated endocytosis in vivo. J. Biol. Chem. 268, 11265–11271.

    CAS  Google Scholar 

  32. Ferkol T., Perales J. C., Kaetzel C. S., et al. (1995) Gene transfer into airways in animals by targeting the polymeric immunoglobulin receptor. J. Clin. Invest. 95, 493–502.

    Article  PubMed  CAS  Google Scholar 

  33. Christiano R. J., Smith L. C., and Woo S. L. (1993) Hepatic gene therapy: aden-ovirus enhancement of receptor-mediated gene delivery and expression in primary hepatocytes. Proc. Natl. Acad. Sci. USA 90, 2122–2126.

    Article  Google Scholar 

  34. Cotten M., Wagner E., Zatloukal K., and Birnstiel M. L. (1993) Chicken aden-ovirus (CELO) particles augment receptor-mediated DNA delivery to mammalian cells and yield exceptional levels of stable transformants. J. Virol. 67, 3777–3785.

    PubMed  CAS  Google Scholar 

  35. Christiano R. J., Smith L. C., Kay M. A., Brinkley B. R., and Woo S. L. (1993) Hepatic gene therapy: efficient gene delivery and expression in primary hepatocytes utilizing a conjugated adenovirus DNA complex. Proc. Natl. Acad. Sci. USA 90, 11548–11552.

    Article  Google Scholar 

  36. Ferkol T., Mularo F., Hilliard J., et al. (1998) Transfer of the gene encoding human alpha1 antitrypsin into pulmonary macrophages in vivo. Am. J. Respir. Cell Mol. Biol. 18, 591–601.

    CAS  Google Scholar 

  37. Ziady A., Ferkol T., Dawson D. V., Perlmutter D. H., and Davis P. B. (1999) Chain length of the polymer portion of receptor-targeted DNA complexes modulates gene transfer both in vitro and in vivo. J. Biol. Chem. 8, 4908–4916.

    Google Scholar 

  38. Ferkol T., Lindberg G. L., Perales J. C., et al. (1993) Regulation of the phospho-enolpyruvate carboxykinase/human factor IX gene introduced into the livers of adult rats by receptor-mediated gene transfer. FASEB J. 7, 1081–1091.

    PubMed  CAS  Google Scholar 

  39. Stankovics J., Crane A. M., Andrews E., et al. (1994) Overexpression of human methylmalonyl CoA mutase in mice after in vivo gene transfer with asialoglycoprotein/polylysine/DNA complexes. Hum. Gene Ther. 5, 1095–1104.

    Article  PubMed  CAS  Google Scholar 

  40. Gao L., Wagner E., Cotten M., et al. (1993) Direct in vivo gene transfer to airway epithelium employing adenovirus-polylysine-DNA complexes. Hum. Gene Ther. 4, 17–24.

    Article  PubMed  Google Scholar 

  41. Stockert R. J. (1995) The asialoglycoprotein receptor: relationships between structure, function, and expression. Physiol Rev. 75, 591–609.

    PubMed  CAS  Google Scholar 

  42. Ponka P. and Lok C. N. (1999) The transferrin receptor: role in health and disease. Int. J. Biochem. Cell Biol. 31, 1111–1137.

    Article  PubMed  CAS  Google Scholar 

  43. Kaetzel C. S., Blanch V. J., Hempen P. M., et al. (1997) The polymeric immu-noglobulin receptor: structure and synthesis. Biochem. Soc. Trans. 25, 475–480.

    PubMed  CAS  Google Scholar 

  44. Cotten M., Wagner E., Zatloukal K., et al. (1992) High-efficiency receptor-mediated delivery of small and large (48 kilobase) gene constructs using endosome-disruption activity of defective or chemically inactivated adenovirus particles. Proc. Natl. Acad. Sci. USA 89, 6094–6098.

    Article  PubMed  CAS  Google Scholar 

  45. Yew N. S., Wysokenski D. M., Wang K. X., et al. (1997) Optimization of plas-mid vectors for high-level expression in lung epithelial cells. Hum. Gene Ther. 8, 575–584.

    Article  PubMed  CAS  Google Scholar 

  46. Adami R.C., Collard W. T., Gupta S. A., et al. (1998) Stability of peptide-con-densed plasmid DNA formulations. J. Pharm. Sci. 87, 678–683.

    Article  PubMed  CAS  Google Scholar 

  47. Wagner E., Cotten M., Foisner R., and Birnstiel M. T. (1991) Transferrin-polycation-DNA complexes: the effect of polycations on the structure of the complex and DNA delivery to cells. Proc. Natl. Acad. Sci. USA 88, 4255–4259.

    Article  PubMed  CAS  Google Scholar 

  48. Miller N. and Vile R. (1995) Targeted vectors for gene therapy. FASEB J. 9, 190–199.

    PubMed  CAS  Google Scholar 

  49. Cotten M., Laengle-Rouault F., Kirlappos H., et al. (1990) Transferrin-polycation mediated introduction of DNA into human leukemic cells: stimulation by agents that affect survival of transfected DNA or modulate transferrin receptor levels. Proc. Natl. Acad. Sci. USA 87, 4033–4037.

    Article  PubMed  CAS  Google Scholar 

  50. Curiel D. T., Agarwal S., Wagner E., and Cotten M. (1991) Adenovirus enhancement of transferrin-polylysine-mediated gene delivery. Proc. Natl. Acad. Sci. USA 88, 8850–8854.

    Article  PubMed  CAS  Google Scholar 

  51. Cotten M. (1995) The entry mechanism of adenovirus and some solutions to the toxicity problems associated with adenovirus-augmented, receptor-mediated gene delivery, in The Molecular Repertoire of Adenoviruses III (Doerfler W. and Böhm P. eds.), Curr. Top. Microbiol. Immunol. 199, 283–295.

    Google Scholar 

  52. Wagner E., Plank C., Zatloukal K., Cotten M., and Birnstiel M. L. (1992) Influenza virus hemaglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc. Natl. Acad. Sci. USA 89, 7934–7938.

    Article  PubMed  CAS  Google Scholar 

  53. Plank C., Oberhauser B., Mechtler K., Koch C., and Wagner E. (1994) The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J. Biol. Chem. 269, 12918–12924.

    PubMed  CAS  Google Scholar 

  54. Kalderon D., Richardson W. D., Markham A. F., and Smith A. E. (1984) Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 311, 33–38.

    Article  PubMed  CAS  Google Scholar 

  55. Bukrinsky M. I., Haggerty S., Dempsey M. P., et al. (1993) A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365, 666–669.

    Article  PubMed  CAS  Google Scholar 

  56. Perales J. C., Ferkol T., Molas M., and Hanson R. W. (1994) Receptor-mediated gene transfer. Eur. J. Biochem. 226, 255–266.

    Article  PubMed  CAS  Google Scholar 

  57. Perales J. C., Ferkol T., Molas M., and Hanson R. W. (1994) An evaluation of receptor-mediated gene transfer using synthetic DNA-ligand complexes. Eur. J. Biochem. 226, 255–266.

    Article  PubMed  CAS  Google Scholar 

  58. Plank C., Mechtler K., Szoka F., and Wagner E. (1996) Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum. Gene Ther. 7, 1437–1446.

    Article  PubMed  CAS  Google Scholar 

  59. Katayose S. and Kataoka K. (1997) Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer. Bioconjug Chem. 8, 702–707.

    Article  PubMed  CAS  Google Scholar 

  60. Emlen W. and Mannik M. (1984) Effect of DNA size and strandedness on the in vivo clearance and organ localization of DNA. Clin. Exp. Immunol. 56, 185–192.

    PubMed  CAS  Google Scholar 

  61. Bond V. C. and Wold B. (1987) Poly-L-ornithine-mediated transformation of mammalian cells. Mol. Cell. Biol. 7, 2286–2293.

    PubMed  CAS  Google Scholar 

  62. Boussif O., Lezoualc’h F., Zanta M. A., et al. (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92, 7297–7301.

    Article  PubMed  CAS  Google Scholar 

  63. Maurer P. H. (1962) Antigenicity of polypeptides (poly-alpha amino acids). J. Immunol. 88, 330–345.

    PubMed  CAS  Google Scholar 

  64. Kantor F. S., Ojeda A., and Benacerraf B. (1962) Studies on artificial antigens: antigenicity of DNP-polylysine and DNP copolymer of lysine and glutamic acid in guinea pigs. Hum Exp. Med. 117, 55–69.

    Article  Google Scholar 

  65. Michael S. I. and Curiel D.T. (1994) Strategies to achieve targeted gene delivery via the receptor-mediated endocytosis pathway. Gene Ther. 1, 223–232.

    PubMed  CAS  Google Scholar 

  66. Haensler J. and Szoka F. C. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem. 4, 372–379.

    Google Scholar 

  67. Brubaker J. O., Thompson C. M., Morrison L. A., et al. (1996) Th1-associated immune response to beta-gal expressed by a replication-defective herpes simplex virus. J. Immunol. 157, 1598–1604.

    PubMed  CAS  Google Scholar 

  68. Cotten M., Baker A., Saltik M., Wagner E., and Buschle M. (1994) Li-popolysaccharide is a frequent contaminant of plasmid DNA preparations and can be toxic to primary human cells in the presence of adenovirus. Gene Ther. 1, 239–246.

    PubMed  CAS  Google Scholar 

  69. Cooper M. J. (1996) Noninfectious gene transfer and expression systems for cancer gene therapy. Semin. Oncol. 23, 172–187.

    PubMed  CAS  Google Scholar 

  70. Huxley C. (1994) Mammalian artificial chromosomes: a new tool for gene therapy. Gene Ther. 1, 7–12.

    PubMed  CAS  Google Scholar 

  71. Zatoukal K., Schneeberger A., Berger M., et al. (1995) Elicitation of a systemic and protective anti-melanoma immune response by an IL-2-based vaccine: assessment of critical cellular and molecular parameters. J. Immunol. 154, 3406–3419.

    Google Scholar 

  72. Ferkol T., Pellicena-Palle A., Eckman E., et al. (1996) Immunologic responses of gene transfer via the polymeric immunoglobulin receptor in mice. Gene Ther. 3, 669–678.

    PubMed  CAS  Google Scholar 

  73. Stahl P. D. and Ezekowitz R. A. (1998) The mannose receptor is a pattern recognition receptor involved in host defense. Curr. Opin. Immunol. 10, 50–55.

    Article  PubMed  CAS  Google Scholar 

  74. Perlmutter D. H. (1994) The SEC receptor: a possible link between neonatal hepatitis in α1-antitrypsin deficiency and Alzheimer’ disease. Pediatr. Res. 36, 271–277.

    Article  PubMed  CAS  Google Scholar 

  75. Maniatis T., Frinsch E. F., and, Stambrook J. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  76. Yengerov Y. Y. and Semenov T. E. (1992) Electron microscopy of DNA complexes with synthetic oligopeptides. Electron Microsc. Rev. 5, 193–207.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Ziady, A.G., Davis, P.B. (2001). Receptor-Directed Molecular Conjugates for Gene Transfer. In: Morgan, J.R. (eds) Gene Therapy Protocols. Methods in Molecular Medicine, vol 69. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-141-8:025

Download citation

  • DOI: https://doi.org/10.1385/1-59259-141-8:025

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-723-6

  • Online ISBN: 978-1-59259-141-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics