Skip to main content

Isolation and Characterization of Primitive Hematopoietic Cells Based on Their Position in the Cell Cycle

  • Protocol
Hematopoietic Stem Cell Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 63))

  • 1122 Accesses

Abstract

Hematopoietic progenitor and stem cells are believed to lie dormant within the adult bone marrow microenvironment in a state characterized by both mitotic and metabolic quiescence. This state of cell-cycle quiescence has been the focus or target of many studies aimed at identifying cells with such mitotic properties for their eventual isolation and characterization. On the other hand, knowledge of the type, frequency, and primitive status of dividing cells in patients with malignant hematopoietic diseases is very important for the hematologist designing therapies aimed at targeting cycling cancer cells with cell-cycle-specific chemotherapuetic drugs that can spare noncycling normal hematopoietic stem cells (HSC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sherr, C. J. (1996) Cancer cell cycles. Science 274, 1672–1677.

    Article  PubMed  CAS  Google Scholar 

  2. Elledge, S. J. (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672.

    Article  PubMed  CAS  Google Scholar 

  3. Howard, A. and Pelc, S. R. (1953) Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosomal breakage. Heredity 6, 261–273.

    CAS  Google Scholar 

  4. Puck, T. T. and Steffen, J. (1963) Life cycle analysis of mamalian cells. Part I. Biophys. J. 3, 379–397.

    Article  PubMed  CAS  Google Scholar 

  5. Lajtha, L. G. (1963) On the concept of the cell cycle. J. Cell. Comp. Physiol. 62, 143–149.

    Google Scholar 

  6. Stillman, B. (1996) Cell cycle control of DNA replication. Science 274, 1659–1664.

    Article  PubMed  CAS  Google Scholar 

  7. Grafi. G. (1998) Cell cycle regulation of DNA replication: the endoreduplication perspective. Exp. Cell Res. 244, 372–378.

    Article  PubMed  CAS  Google Scholar 

  8. Schafer, K.A. (1998) The cell cycle: a review. Vet. Pathol. 35, 461–478.

    Article  PubMed  CAS  Google Scholar 

  9. Hulett, H. R., Bonner, W. A., Barret, J., and Herzenberg, L. A. (1969) Cell sorting: automated separation of mamalian cells as a function of intracellular fluorescence. Science 166, 747–749.

    Article  PubMed  CAS  Google Scholar 

  10. Van Dilla, M. A., Trujillo, T. T., Mullaney, P. F., and Coulter, J. R. (1969) Cell microfluorometry: a method for rapid fluorescence measurements. Science 169, 1213–1214.

    Article  Google Scholar 

  11. Johnson, L. V., Walsh, M. L., and Chen, L. B. (1980) Localization of mitochondria in living cells with rhodamine 123. Proc. Natl. Acad. Sci. USA 77, 990–994.

    Article  PubMed  CAS  Google Scholar 

  12. Bertoncello, I., Hodgson, G. S., and Bradley, T. R. (1985) Multiparameter analysis of transplantable hematopoietic stem cells. I. The separation and enrichment of stem cells homing to marrow and spleen on the basis of rhodamine 123 fluorescence. Exp. Hematol. 13, 999–1006.

    PubMed  CAS  Google Scholar 

  13. Visser, J. W. M. and deVries, P. (1988) Isolation of spleen-colony forming cells (CFU-S) using wheat germ agglutinin and rhodamine 123 labeling. Blood Cells 14, 369–384.

    CAS  Google Scholar 

  14. Darzynkiewicz, Z., Traganos, F., Staiano-Coico, L., Kapuscinski, J., and Melamed, M. R. (1982) Interactions of rhodamine 123 with living cells studied by flow cytometry. Cancer Research 42.

    Google Scholar 

  15. Jordan, C. T., Yamasaki, G., and Minamoto, D. (1996) High-resolution cell cycle analysis of defined phenotypic subsets within primitive human hematopoietic cell populations. Exp. Hematol. 2, 1347–1352.

    Google Scholar 

  16. Shapiro, H. M. (1981) Flow cytometric estimation of DNA and RNA content in intact cells stained with Hoechst 33342 and Pyronin Y. Cytometry 2, 143–151.

    Article  PubMed  CAS  Google Scholar 

  17. Darzynkiewicz, Z., Kapuscinski, J., Traganos, F., and Crissman, H. A. (1987) Application of pyronin Y (G) in cytochemistry of nucleic acids. Cytometry 8, 138–145.

    Article  PubMed  CAS  Google Scholar 

  18. Darzynkiewicz, Z., Evenson, L., Staiano-Coico, L., Sharpless, T., and Melamed, M. (1979) Relationship between RNA content and progression of lymphocytes through S-phase of cell cycle. Proc. Natl. Acad. Sci. USA 76, 358–365.

    Article  PubMed  CAS  Google Scholar 

  19. Darzynkiewicz, Z., Traganos, F., and Melamed, R. M. (1980) New cycle compartments identified by multiparameter flow cytometry. Cytometry 1, 98–105.

    Article  PubMed  CAS  Google Scholar 

  20. Darzynkiewicz, Z., Evenson, D. P., Staiano-Coico, L., Sharpless, T., and Melamed, M. R. (1979) Correlation between cell cycle duration and RNA content. J. Cell. Physiol. 100, 425–438.

    Article  PubMed  CAS  Google Scholar 

  21. Darzynkiewicz, Z., Sharpless, T., Staiano-Coico, L., and Melamed, M. R. (1980) Subcompartments of the G1 phase of cell cycle detected by flow cytometry. Proc. Natl. Acad. Sci. USA 77, 6696–6700.

    Article  PubMed  CAS  Google Scholar 

  22. Cowden, R. R. and Curtis S. K. Supravital experiments with pyronin Y, a fluorochrome of mitochondria and nucleic acids. Histochemistry 77.

    Google Scholar 

  23. Ladd, A. C., Pyatt, R., Gothot, A., Rice, S., McMahel, J., Traycoff, C. M., and Srour, E. F. (1997) Orderly process of sequential cytokine stimulation is required for activation and maximal proliferation of primitive human bone marrow CD34+ hematopoietic progenitor cells residing in G0. Blood 90, 658–668.

    PubMed  CAS  Google Scholar 

  24. Gothot, A., Pyatt, R., McMahel, J., Rice, S., and Srour, E. F. (1997) Functional heterogeneity of human CD34+ cells isolated in subcompartments of the G0/G1 phase of the cell cycle. Blood 90, 4384–4393.

    PubMed  CAS  Google Scholar 

  25. Gothot, A., Pyatt, R., McMahel, J., Rice, S., and Srour, E. F. (1998) Assessment of proliferative and colony-forming capacity after successive in vitro divisions of single human CD34+ cells initially isolated in G0. Exp. Hematol. 26, 562–570.

    PubMed  CAS  Google Scholar 

  26. Gothot, A., van der Loo, J. C. M., Clapp, D. W., and Srour, E. F. Cell cyclerelated changes in repopulating capacity of human mobilized peripheral blood CD34+ cells in non-obese diabetic/severe combined immune-deficient mice. Blood 92, 2641–2649.

    Google Scholar 

  27. Wilpshaar, J., Falkenburg, J. H. F., Tong, X., Noort, W. A., Breese, R., et al. (2000) Similar repopulating capacity of mitotically active and resting umbilical cord blood CD34+ cells in NOD/SCID mice. Blood 96, 2100–2107.

    Google Scholar 

  28. Hartwell, L. H. and Kastan, M. B. (1994) Cell cycle control and cancer. Science 266, 1821–1823.

    Article  PubMed  CAS  Google Scholar 

  29. Darzynkiewicz, Z., Gong, J., Juan, G., Ardelt, B., and Traganos, F. (1996) Cytometry of cyclin proteins. Cytometry 25, 1–13.

    Article  PubMed  CAS  Google Scholar 

  30. Sherr, C. J. and Roberts, J. M. (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9, 1149–1163.

    Article  PubMed  CAS  Google Scholar 

  31. Wolf, N. S., Kone, A., Priestley, G. V., and Bartelmez, S. H. (1993) In vivo and in vitro characterization of long-term repopulating primitive hematopoietic cells isolated by sequential Hoechst 33342-rhodamine 123 FACS selection. Exp. Hematol. 21, 614–622.

    PubMed  CAS  Google Scholar 

  32. Gong. J., Traganos, F., and Darzynkiewicz, Z. (1995) Threshold expression of cyclin E but not D type cyclins characterizes normal and tumour cells entering S phase. Cell Prolif. 28, 337–346.

    Article  PubMed  CAS  Google Scholar 

  33. Neering, S. J., Hardy, S. F., Minamoto, D., Kaye Spratt, S., and Jordan, C. T. (1996) Transduction of primitive human hematopoietic cells with recombinant adenovirus vectors. Blood 88, 1147–1155.

    PubMed  CAS  Google Scholar 

  34. Gerdes. J., Lemke, H., Baisch, H., Wacker, H. H., Schwab, U., and Stein, H. (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol. 133, 1710–1715.

    PubMed  CAS  Google Scholar 

  35. Schluter, C., Duchrow, M., Wohlenberg, C., Becker, M. H., Key, G., Flad, H. D., and Gerdes, J. (1993) The cell proliferation-associated antigen of antibody Ki-67: a large, ubiquitous nuclear protein with numerous repeated elements, representing a new kind of cell cycle-maintaining proteins. Journal of Cellular Biology 123, 513–522.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Srour, E.F., Jordan, C.T. (2002). Isolation and Characterization of Primitive Hematopoietic Cells Based on Their Position in the Cell Cycle. In: Klug, C.A., Jordan, C.T. (eds) Hematopoietic Stem Cell Protocols. Methods in Molecular Medicine, vol 63. Humana Press. https://doi.org/10.1385/1-59259-140-X:093

Download citation

  • DOI: https://doi.org/10.1385/1-59259-140-X:093

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-812-7

  • Online ISBN: 978-1-59259-140-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics