Skip to main content

The Purification of Mouse Hematopoietic Stem Cells at Sequential Stages of Maturation

  • Protocol
Hematopoietic Stem Cell Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 63))

  • 1107 Accesses

Abstract

Hematopoietic stem cells (HSCs) are rare, self-renewing progenitors that give rise to all lineages of blood cells. HSCs can be found in all hematopoietic organs, from the para-aortic mesoderm (1),(2) and yolk sac (3),(4) in fetuses to the bone marrow (reviewed in ref. 5), blood and spleens of adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muller A. M., Medvinsky A., Strouboulis J., Grosveld F., and Dzierzak E. (1994) Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1, 291–301.

    Article  PubMed  CAS  Google Scholar 

  2. Godin I., Dieterlen-Lievre F., and Cumano A. (1995) Emergence of multipotent hematopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos, beginning at 8.5 days postcoitus. Proc. Natl. Acad. Sci. USA 92, 773–777.

    Article  PubMed  CAS  Google Scholar 

  3. Huang H. and Auerbach R. (1993) Identification and characterization of hematopoietic stem cells from the yolk sac of the early mouse embryo. Proc. Natl. Acad. Sci. USA 90, 10,110–10,114.

    Article  PubMed  CAS  Google Scholar 

  4. Yoder M. C., Hiatt K., and Mukherjee P. (1997) In vivo repopulating hematopoietic stem cells are present in the murine yolk sac at day 9.0 postcoitus. Proc. Natl. Acad. Sci. USA 94, 6776–6780.

    Article  PubMed  CAS  Google Scholar 

  5. Morrison S. J., Uchida N., and Weissman I. L. (1995) The biology of hematopoietic stem cells. Annu. Rev. Cell Dev. Biol. 11, 35–71.

    Article  PubMed  CAS  Google Scholar 

  6. Molineux G., Pojda Z., Hampson I. N., Lord B. I., and Dexter T. M. (1990) Transplantation potential of peripheral blood stem cells induced by granulocyte colony-stimulating factor. Blood 76, 2153–2158.

    PubMed  CAS  Google Scholar 

  7. Bodine D. M., Seidel N. E., Zsebo K. M., and Orlic D. (1993) In vivo administration of stem cell factor to mice increases the absolute number of pluripotent hematopoietic stem cells. Blood 82, 445–455.

    PubMed  CAS  Google Scholar 

  8. Fleming W. H., Alpern E. J., Uchida N., Ikuta K., and Weissman I. L. (1993) Steel factor influences the distribution and activity of murine hematopoietic stem cells in vivo. Proc. Natl. Acad. Sci. USA 90, 3760–3764.

    Article  PubMed  CAS  Google Scholar 

  9. Spangrude G. J., Heimfeld S., and Weissman I. L. (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62.

    Article  PubMed  CAS  Google Scholar 

  10. Uchida N. and Weissman I. L. (1992) Searching for hematopoietic stem cells: evidence that Thy-1.11o Lin-Sca-l+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow. J. Exp. Med. 175, 175–184.

    Article  PubMed  CAS  Google Scholar 

  11. Harrison D. E., and Zhong R.-K. (1992) The same exhaustible multilineage precursor produces both myeloid and lymphoid cells as early as 3–4 weeks after marrow transplantation. Proc. Natl. Acad. Sci. USA 89, 10,l34–10,138.

    Article  Google Scholar 

  12. Uchida N., Fleming W. H., Alpern E. J., and Weissman I. L. (1993) Heterogeneity of hematopoietic stem cells. Curr. Opin. Immunol. 5, 177–184.

    Article  PubMed  CAS  Google Scholar 

  13. Morrison S. J. and Weissman I. L. (1994) The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673.

    Article  PubMed  CAS  Google Scholar 

  14. Morrison S. J., Wandycz A. M., Hemmati H. D., Wright D. E., and Weissman I. L. (1997) Identification of a lineage of multipotent hematopoietic progenitors. Development 124, 1929–1939.

    PubMed  CAS  Google Scholar 

  15. Morrison S. J., Wright D., and Weissman I. L. (1997) Cyclophosphamide/granulocyte-colony-stimulating factor induces cells to proliferate prior to mobilization. Proc. Natl. Acad. Sci. USA 94, 1908–1913.

    Article  PubMed  CAS  Google Scholar 

  16. Cheshier S., Morrison S. J., Liao X., and Weissman I. L. (1999) In vivo proliferation and cell cycle kinetics of isolated long-term self-renewing hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 96, 3120–3125

    Article  PubMed  CAS  Google Scholar 

  17. Morrison S. J., Prowse K. R., Ho P., and Weissman I. L. (1996) Telomerase activity of hematopoietic cells is associated with self-renewal potential. Immunity 5, 207–216.

    Article  PubMed  CAS  Google Scholar 

  18. Klug C. A., Morrison S. J., Masek M., Hahm K., Smale S. T., and Weissman I. L. (1998) Hematopoietic stem cells and lymphoid progenitors express different Ikaros isoforms and Ikaros is localized to heterochromatin in immature lymphocytes. Proc. Natl. Acad. Sci. USA 95, 657–662.

    Article  PubMed  CAS  Google Scholar 

  19. Lansdorp P. M., Dragowska W., and Mayani H. (1993) Ontogeny-related changes in proliferative potential of human hematopoietic cells. J. Exp. Med. 178, 787–791.

    Article  PubMed  CAS  Google Scholar 

  20. Morrison S. J., Wandycz A. M., Akashi K., Globerson A., and Weissman I. L. (1996) The aging of hematopoietic stem cells. Nat. Med. 2, 202–206.

    Google Scholar 

  21. Fleischman R. A., Custer R. P., and Mintz B. (1982) Totipotent hematopoietic stem cells: normal self-renewal and differentiation after transplantation between mouse fetuses. Cell 30, 351–359.

    Article  PubMed  CAS  Google Scholar 

  22. Clapp D. W., Freie B., Lee W.-H., and Zhang Y.-Y. (1995) Molecular evidence that in situ-transduced fetal liver hematopoietic stem/progenitor cells give rise to medullary hematopoiesis in adult rats. Blood 86, 2113–2122.

    PubMed  CAS  Google Scholar 

  23. Morrison S. J., Hemmati H. D., Wandycz A. M., and Weissman I. L. (1995) The purification and characterization of fetal liver hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 92, 10,302–10,306.

    Article  PubMed  CAS  Google Scholar 

  24. Rebel V. I., Miller C. L., Eaves C. J., and Lansdorp P. M. (1996) The repopulation potential of fetal liver hematopoietic stem cells in mice exceeds that of their adult bone marrow counterparts. Blood 87, 3500–3507.

    PubMed  CAS  Google Scholar 

  25. Wolf N. S., Kone A., Priestley G. V., and Bartelmez S. H. (1993) In vivo and in vitro characterization of long-term repopulating primitive hematopoietic cells isolated by sequential Hoechst 33342-rhodamine 123 FACS selection. Exp. Hematol. 21, 614–622.

    PubMed  CAS  Google Scholar 

  26. Spangrude G. J., Brooks D. M., and Tumas D. B. (1995) Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function. Blood 85, 1006–1016.

    PubMed  CAS  Google Scholar 

  27. Li C. L. and Johnson G. R. (1995) Murine hematopoietic stem and progenitor cells: I. Enrichment and biologic characterization. Blood 85, 1472–1479.

    PubMed  CAS  Google Scholar 

  28. Li C. L. and Johnson G. R. (1992) Rhodamine 123 reveals heterogeneity within murine Lin-, Sca-l+ hematopoietic stem cells. J. Exp. Med. 175, 1443–1447.

    Article  PubMed  CAS  Google Scholar 

  29. Zijlmans J. M., Visser J. W. M., Kleiverda K., Kluin P. M., Willemze R., and Fibbe W. E. (1995) Modification of rhodamin staining with the use of verapamil allows identification of hematopoietic stem cells with preferential short-term or long-term bone marrow-repopulating ability. Proc. Natl. Acad. Sci. USA 92, 8901–8905.

    Article  PubMed  CAS  Google Scholar 

  30. Osawa M., Hanada K.-I., Hamada H., and Nakauchi H. (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245.

    Article  PubMed  CAS  Google Scholar 

  31. Jones R. J., Collector M. I., Barber J. P., Vala M. S., Fackler M. J., May W. S., et al. (1996) Characterization of mouse lymphohematopoietic stem cells lacking spleen colony-forming activity. Blood 88, 487–491

    PubMed  CAS  Google Scholar 

  32. Morrison S. J., Lagasse E., and Weissman I. L. (1994) Demonstration that Thylo subsets of mouse bone marrow that express high levels of lineage markers are not significant hematopoietic progenitors. Blood 83, 3480–3490.

    PubMed  CAS  Google Scholar 

  33. deHaan G., Nijhof W., and VanZant G. (1997) Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity. Blood 89, 1543–1550.

    CAS  Google Scholar 

  34. deHaan G. and VanZant G. (1997) Intrinsic and extrinsic control of hematopoietic stem cell numbers: mapping of a stem cell gene. J. Exp. Med. 186, 529–536.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Morrison, S.J. (2002). The Purification of Mouse Hematopoietic Stem Cells at Sequential Stages of Maturation. In: Klug, C.A., Jordan, C.T. (eds) Hematopoietic Stem Cell Protocols. Methods in Molecular Medicine, vol 63. Humana Press. https://doi.org/10.1385/1-59259-140-X:015

Download citation

  • DOI: https://doi.org/10.1385/1-59259-140-X:015

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-812-7

  • Online ISBN: 978-1-59259-140-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics