Advertisement

Isolation and Characterization of Primitive Hematopoietic Cells Based on Their Position in the Cell Cycle

  • Edward F. Srour
  • Craig T. Jordan
Part of the Methods in Molecular Medicine book series (MIMM, volume 63)

Abstract

Hematopoietic progenitor and stem cells are believed to lie dormant within the adult bone marrow microenvironment in a state characterized by both mitotic and metabolic quiescence. This state of cell-cycle quiescence has been the focus or target of many studies aimed at identifying cells with such mitotic properties for their eventual isolation and characterization. On the other hand, knowledge of the type, frequency, and primitive status of dividing cells in patients with malignant hematopoietic diseases is very important for the hematologist designing therapies aimed at targeting cycling cancer cells with cell-cycle-specific chemotherapuetic drugs that can spare noncycling normal hematopoietic stem cells (HSC).

Keywords

Working Solution Primitive Hematopoietic Cell Incubate Cell Metabolic Quiescence Sort Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sherr, C. J. (1996) Cancer cell cycles. Science 274, 1672–1677.PubMedCrossRefGoogle Scholar
  2. 2.
    Elledge, S. J. (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672.PubMedCrossRefGoogle Scholar
  3. 3.
    Howard, A. and Pelc, S. R. (1953) Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosomal breakage. Heredity 6, 261–273.Google Scholar
  4. 4.
    Puck, T. T. and Steffen, J. (1963) Life cycle analysis of mamalian cells. Part I. Biophys. J. 3, 379–397.PubMedCrossRefGoogle Scholar
  5. 5.
    Lajtha, L. G. (1963) On the concept of the cell cycle. J. Cell. Comp. Physiol. 62, 143–149.Google Scholar
  6. 6.
    Stillman, B. (1996) Cell cycle control of DNA replication. Science 274, 1659–1664.PubMedCrossRefGoogle Scholar
  7. 7.
    Grafi. G. (1998) Cell cycle regulation of DNA replication: the endoreduplication perspective. Exp. Cell Res. 244, 372–378.PubMedCrossRefGoogle Scholar
  8. 8.
    Schafer, K.A. (1998) The cell cycle: a review. Vet. Pathol. 35, 461–478.PubMedCrossRefGoogle Scholar
  9. 9.
    Hulett, H. R., Bonner, W. A., Barret, J., and Herzenberg, L. A. (1969) Cell sorting: automated separation of mamalian cells as a function of intracellular fluorescence. Science 166, 747–749.PubMedCrossRefGoogle Scholar
  10. 10.
    Van Dilla, M. A., Trujillo, T. T., Mullaney, P. F., and Coulter, J. R. (1969) Cell microfluorometry: a method for rapid fluorescence measurements. Science 169, 1213–1214.CrossRefGoogle Scholar
  11. 11.
    Johnson, L. V., Walsh, M. L., and Chen, L. B. (1980) Localization of mitochondria in living cells with rhodamine 123. Proc. Natl. Acad. Sci. USA 77, 990–994.PubMedCrossRefGoogle Scholar
  12. 12.
    Bertoncello, I., Hodgson, G. S., and Bradley, T. R. (1985) Multiparameter analysis of transplantable hematopoietic stem cells. I. The separation and enrichment of stem cells homing to marrow and spleen on the basis of rhodamine 123 fluorescence. Exp. Hematol. 13, 999–1006.PubMedGoogle Scholar
  13. 13.
    Visser, J. W. M. and deVries, P. (1988) Isolation of spleen-colony forming cells (CFU-S) using wheat germ agglutinin and rhodamine 123 labeling. Blood Cells 14, 369–384.Google Scholar
  14. 14.
    Darzynkiewicz, Z., Traganos, F., Staiano-Coico, L., Kapuscinski, J., and Melamed, M. R. (1982) Interactions of rhodamine 123 with living cells studied by flow cytometry. Cancer Research 42.Google Scholar
  15. 15.
    Jordan, C. T., Yamasaki, G., and Minamoto, D. (1996) High-resolution cell cycle analysis of defined phenotypic subsets within primitive human hematopoietic cell populations. Exp. Hematol. 2, 1347–1352.Google Scholar
  16. 16.
    Shapiro, H. M. (1981) Flow cytometric estimation of DNA and RNA content in intact cells stained with Hoechst 33342 and Pyronin Y. Cytometry 2, 143–151.PubMedCrossRefGoogle Scholar
  17. 17.
    Darzynkiewicz, Z., Kapuscinski, J., Traganos, F., and Crissman, H. A. (1987) Application of pyronin Y (G) in cytochemistry of nucleic acids. Cytometry 8, 138–145.PubMedCrossRefGoogle Scholar
  18. 18.
    Darzynkiewicz, Z., Evenson, L., Staiano-Coico, L., Sharpless, T., and Melamed, M. (1979) Relationship between RNA content and progression of lymphocytes through S-phase of cell cycle. Proc. Natl. Acad. Sci. USA 76, 358–365.PubMedCrossRefGoogle Scholar
  19. 19.
    Darzynkiewicz, Z., Traganos, F., and Melamed, R. M. (1980) New cycle compartments identified by multiparameter flow cytometry. Cytometry 1, 98–105.PubMedCrossRefGoogle Scholar
  20. 20.
    Darzynkiewicz, Z., Evenson, D. P., Staiano-Coico, L., Sharpless, T., and Melamed, M. R. (1979) Correlation between cell cycle duration and RNA content. J. Cell. Physiol. 100, 425–438.PubMedCrossRefGoogle Scholar
  21. 21.
    Darzynkiewicz, Z., Sharpless, T., Staiano-Coico, L., and Melamed, M. R. (1980) Subcompartments of the G1 phase of cell cycle detected by flow cytometry. Proc. Natl. Acad. Sci. USA 77, 6696–6700.PubMedCrossRefGoogle Scholar
  22. 22.
    Cowden, R. R. and Curtis S. K. Supravital experiments with pyronin Y, a fluorochrome of mitochondria and nucleic acids. Histochemistry 77.Google Scholar
  23. 23.
    Ladd, A. C., Pyatt, R., Gothot, A., Rice, S., McMahel, J., Traycoff, C. M., and Srour, E. F. (1997) Orderly process of sequential cytokine stimulation is required for activation and maximal proliferation of primitive human bone marrow CD34+ hematopoietic progenitor cells residing in G0. Blood 90, 658–668.PubMedGoogle Scholar
  24. 24.
    Gothot, A., Pyatt, R., McMahel, J., Rice, S., and Srour, E. F. (1997) Functional heterogeneity of human CD34+ cells isolated in subcompartments of the G0/G1 phase of the cell cycle. Blood 90, 4384–4393.PubMedGoogle Scholar
  25. 25.
    Gothot, A., Pyatt, R., McMahel, J., Rice, S., and Srour, E. F. (1998) Assessment of proliferative and colony-forming capacity after successive in vitro divisions of single human CD34+ cells initially isolated in G0. Exp. Hematol. 26, 562–570.PubMedGoogle Scholar
  26. 26.
    Gothot, A., van der Loo, J. C. M., Clapp, D. W., and Srour, E. F. Cell cyclerelated changes in repopulating capacity of human mobilized peripheral blood CD34+ cells in non-obese diabetic/severe combined immune-deficient mice. Blood 92, 2641–2649.Google Scholar
  27. 26a.
    Wilpshaar, J., Falkenburg, J. H. F., Tong, X., Noort, W. A., Breese, R., et al. (2000) Similar repopulating capacity of mitotically active and resting umbilical cord blood CD34+ cells in NOD/SCID mice. Blood 96, 2100–2107.Google Scholar
  28. 27.
    Hartwell, L. H. and Kastan, M. B. (1994) Cell cycle control and cancer. Science 266, 1821–1823.PubMedCrossRefGoogle Scholar
  29. 28.
    Darzynkiewicz, Z., Gong, J., Juan, G., Ardelt, B., and Traganos, F. (1996) Cytometry of cyclin proteins. Cytometry 25, 1–13.PubMedCrossRefGoogle Scholar
  30. 29.
    Sherr, C. J. and Roberts, J. M. (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9, 1149–1163.PubMedCrossRefGoogle Scholar
  31. 30.
    Wolf, N. S., Kone, A., Priestley, G. V., and Bartelmez, S. H. (1993) In vivo and in vitro characterization of long-term repopulating primitive hematopoietic cells isolated by sequential Hoechst 33342-rhodamine 123 FACS selection. Exp. Hematol. 21, 614–622.PubMedGoogle Scholar
  32. 31.
    Gong. J., Traganos, F., and Darzynkiewicz, Z. (1995) Threshold expression of cyclin E but not D type cyclins characterizes normal and tumour cells entering S phase. Cell Prolif. 28, 337–346.PubMedCrossRefGoogle Scholar
  33. 32.
    Neering, S. J., Hardy, S. F., Minamoto, D., Kaye Spratt, S., and Jordan, C. T. (1996) Transduction of primitive human hematopoietic cells with recombinant adenovirus vectors. Blood 88, 1147–1155.PubMedGoogle Scholar
  34. 33.
    Gerdes. J., Lemke, H., Baisch, H., Wacker, H. H., Schwab, U., and Stein, H. (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol. 133, 1710–1715.PubMedGoogle Scholar
  35. 34.
    Schluter, C., Duchrow, M., Wohlenberg, C., Becker, M. H., Key, G., Flad, H. D., and Gerdes, J. (1993) The cell proliferation-associated antigen of antibody Ki-67: a large, ubiquitous nuclear protein with numerous repeated elements, representing a new kind of cell cycle-maintaining proteins. Journal of Cellular Biology 123, 513–522.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2002

Authors and Affiliations

  • Edward F. Srour
    • 1
  • Craig T. Jordan
    • 2
  1. 1.Indiana Cancer Research Institute, Indiana University School of MedicineIndianapolis
  2. 2.Markey Cancer Center, University of KentuckyLexington

Personalised recommendations