Nonviral DNA Delivery from Polymeric Systems

  • Lonnie D. Shea
  • David J. Mooney
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 65)

Abstract

Gene therapy holds great promise for the treatment of disease by delivering genes encoding for therapeutic proteins. Although it was originally devised for the treatment of inherited genetic disorders, such as cystic fibrosis, recent work has expanded the applications of gene therapy to develop strategies for HIV, cancer (1), and wound healing applications (2). The challenge of gene therapy is to develop safe and efficient gene delivery systems (1). Most studies have focused on the use of viral vectors because of their potentially high efficiencies; however, the safety and ease of manufacturing of nonviral vectors may make them the preferred choice in the future.

Keywords

Petroleum Mold Sodium Chloride Aldehyde Electrophoresis 

References

  1. 1.
    Anderson W. F. (1998) Human gene therapy. Nature 392, 25–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Bonadio J., Goldstein S. A., and Levy R. J. (1998) Gene therapy for tissue repair and regeneration. Adv. Drug Delivery Rev. 33, 53–69.CrossRefGoogle Scholar
  3. 3.
    Ledley F. D. (1996) Pharmaceutical approach to somatic gene therapy. Pharm. Res. 13, 1595–1614.CrossRefPubMedGoogle Scholar
  4. 4.
    Ledley F. D. (1995) Nonviral gene therapy: the promise of genes as pharmaceutical products. Hum. Gene Ther. 6, 1129–1144.CrossRefPubMedGoogle Scholar
  5. 5.
    Luo D. and Saltzman W. M. (2000) Synthetic DNA delivery systems. Nat. Biotechnol. 18, 33–37.CrossRefPubMedGoogle Scholar
  6. 6.
    Langer R. (1998) Drug delivery and targeting. Nature 392, 5–10.PubMedGoogle Scholar
  7. 7.
    Sanders L. M., Kell B. A., McRae G. I., and Whitehead G. W. (1986) Prolonged controlled-release of nafarelin, a luteinizing hormone-releasing hormone analogue, from biodegradable polymeric implants: influence of composition and molecular weight of polymer. J. Pharm. Sci. 75, 356–360.CrossRefPubMedGoogle Scholar
  8. 8.
    Takakura Y., Mahato R. I., and Hashida M. (1998) Extravasation of macromolecules. Adv. Drug Delivery Rev. 34, 93–108.CrossRefGoogle Scholar
  9. 9.
    Choate K. A. and Khavari P. A. (1997) Direct cutaneous gene delivery in a human genetic skin disease. Hum. Gene Ther. 8, 1659–1665.CrossRefPubMedGoogle Scholar
  10. 10.
    Levy M. Y., Barron L. G., Meyer K. B., and Szoka F. C., Jr. (1996) Characterization of plasmidDNA transfer into mouse skeletal muscle: evaluation of uptake mechanism, expression and secretion of gene products into blood. Gene Ther. 3, 201–211.PubMedGoogle Scholar
  11. 11.
    Kawabata K., Takakura Y., and Hashida M. (1995) Fate of plasmid DNA after intravenous injection in mice: involvement of scavenger receptors in its hepatic uptake. Pharm. Res. 12, 825–830.CrossRefPubMedGoogle Scholar
  12. 12.
    Baldwin S. P. and Saltzman W. M. (1998) Materials for protein delivery in tissue engineering. Adv. Drug Delivery Rev. 33, 71–86.CrossRefGoogle Scholar
  13. 13.
    Hedley M. L., Curley J., and Urban R. (1998) Microspheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses. Nat. Med. 4, 365–368.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang D., Robinson D. R., Kwon G. S., and Samuel J. (1999) Encapsulation of plasmid DNA in biodegradable poly(¢D,¢L-lactic-co-glycolic acid) microspheres as a novel approach for immunogene delivery. J. Controlled Release 57, 9–18.CrossRefGoogle Scholar
  15. 15.
    Jones D. H., Corris S., McDonald S., Clegg J. C., and Farrar G. H. (1997) Poly(¢D,¢L-lactide-co-glycolide)-encapsulated plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration. Vaccine 15, 814–817.CrossRefPubMedGoogle Scholar
  16. 16.
    Luo D., Woodrow-Mumford K., Belcheva N., and Saltzman W. M. (1999) Controlled DNA delivery systems. Pharm. Res. 16, 1300–1308.CrossRefPubMedGoogle Scholar
  17. 17.
    Ochiya T., Takahama Y., Nagahara S., Sumita Y., Hisada A., Itoh H., Nagai Y., and Terada M. (1999) New delivery system for plasmid DNA in vivo using atelocollagen as a carrier material: the Minipellet. Nat. Med. 5, 707–710.CrossRefPubMedGoogle Scholar
  18. 18.
    Mathiowitz E., Jacob J. S., Jong Y. S., Carino G. P., Chickering D. E., Chaturvedi P., et al. (1997) Biologically erodable microspheres as potential oral drug delivery systems. Nature 386, 410–414.CrossRefPubMedGoogle Scholar
  19. 19.
    Shea L. D., Smiley E., Bonadio J., and Mooney D. J. (1999) DNA delivery from polymer matrices for tissue engineering. Nat. Biotechnol. 17, 551–554.CrossRefPubMedGoogle Scholar
  20. 20.
    Bonadio J., Smiley E., Patil P., and Goldstein S. (1999) Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat. Med. 5, 753–759.CrossRefPubMedGoogle Scholar
  21. 21.
    Middaugh C. R., Evans R. K., Montgomery D. L., and Casimiro D. R. (1998) Analysis of plasmid DNA from a pharmaceutical perspective. J. Pharm. Sci. 87, 130–146.CrossRefPubMedGoogle Scholar
  22. 22.
    Pachence J. M. (1996) Collagen-based devices for soft tissue repair. J. Biomed. Mater. Res. 33, 35–40.CrossRefPubMedGoogle Scholar
  23. 23.
    Schoen F. J. and Levy R. J. (1999) Tissue heart valves: current challenges and future research perspectives. J. Biomed. Mater. Res. 47, 439–465.CrossRefPubMedGoogle Scholar
  24. 24.
    Wong W. H. and Mooney D. J. (1997) Synthesis and properties of biodegradable polymers used as synthetic matrices for tissue engineering, in Synthetic Biodegradable Polymer Scaffolds (Atala A. and Mooney D. J., eds.), Birkhauser, Boston, pp. 49–80.Google Scholar
  25. 25.
    Peppas N. A. and Langer R. (1994) New challenges in biomaterials. Science 263, 1715–1720.CrossRefPubMedGoogle Scholar
  26. 26.
    Muggli D. S., Burkoth A. K., and Anseth K. S. (1999) Crosslinked polyanhydrides for use in orthopedic applications: degradation behavior and mechanics. J. Biomed. Mater. Res. 46, 271–278.CrossRefPubMedGoogle Scholar
  27. 27.
    Cleland J. L., Powell M. F., and Shire S. J. (1993) The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation [published erratum appears in Crit. Rev. Ther. Drug Carrier Syst. 1994;11:60]. Crit. Rev. Ther. Drug Carrier Syst. 10, 307–377.PubMedGoogle Scholar
  28. 28.
    Putney S. D. and Burke P. A. (1998) Improving protein therapeutics with sustained-release formulations [published erratum appears in Nat. Biotechnol. 1998 16:478]. Nat. Biotechnol. 16, 153–157.CrossRefPubMedGoogle Scholar
  29. 29.
    Adami R. C., Collard W. T., Gupta S. A., Kwok K. Y., Bonadio J., and Rice K. G. (1998) Stability of peptide-condensed plasmid DNA formulations. J. Pharm. Sci. 87, 678–683.CrossRefPubMedGoogle Scholar
  30. 30.
    Capan Y., Woo B. H., Gebrekidan S., Ahmed S., and DeLuca P. P. (1999) Preparation and characterization of poly (¢D,¢L-lactide-co-glycolide) microspheres for controlled release of poly(¢L-lysine) complexed plasmid DNA. Pharm. Res. 16, 509–513.CrossRefPubMedGoogle Scholar
  31. 31.
    Capan Y., Woo B. H., Gebrekidan S., Ahmed S., and DeLuca P. P. (1999) Influence of formulation parameters on the characteristics of poly(¢D,¢L-lactideco-glycolide) microspheres containing poly(¢L-lysine) complexed plasmid DNA. J. Controlled Release 60, 279–286.CrossRefGoogle Scholar
  32. 32.
    Ando S., Putnam D., Pack D. W., and Langer R. (1999) PLGA microspheres containing plasmid DNA: preservation of supercoiled DNA via cryopreparation and carbohydrate stabilization. J. Pharm. Sci. 88, 126–130.CrossRefPubMedGoogle Scholar
  33. 33.
    Jong Y. S., Jacob J. S., Yip K., Gardner G., Seitelman E., Whitney M., Montgomery S., and Mathiowitz E. (1997) Controlled release of plasmid DNA. J. Controlled Release 47, 123–134.CrossRefGoogle Scholar
  34. 34.
    Fang J., Zhu Y. Y., Smiley E., Bonadio J., Rouleau J. P., Goldstein S. A., et al. (1996) Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc. Natl. Acad. Sci. USA 93, 5753–5758.CrossRefPubMedGoogle Scholar
  35. 35.
    Harris L. D., Kim B. S., and Mooney D. J. (1998) Open pore biodegradable matrices formed with gas foaming. J. Biomed. Mater. Res. 42, 396–402.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Lonnie D. Shea
    • 1
  • David J. Mooney
    • 2
  1. 1.Departments of Chemical Engineering and Biomedical EngineeringNorthwestern UniversityEvanston
  2. 2.Departments of Chemical Engineering, Biologic and Materials Science, and Biomedical EngineeringUniversity of MichiganAnn Arbor

Personalised recommendations