Skip to main content

Mutation Detection in β- and γ-Sarcoglycan (LGMD2E and LGMD2C)

  • Protocol
Muscular Dystrophy

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 43))

  • 453 Accesses

Abstract

Direct mutation analysis in the genes for β- and γ- sarcoglycan (SG) is performed in a patient in whom a type of autosomal recessive limb-girdle muscular dystrophy (LGMD) affecting the SG complex is suspected. Ideally, this suspicion should have been substantiated by analysis of the SG complex using immunohistochemical (IHC) methods and/or Westernblot analysis of a muscle biopsy specimen from the patient before proceeding to the actual mutation analysis (see Chapter 15). In addition, the IHC results may directly suggest the primary SG gene involved (see subheading), thus potentially streamlining the search for the underlying mutation, which otherwise may have to cover all four currently known SG genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Orita, M., Suzuki, Y., Sekiya, and Hayashi, K. (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using polymerase chian reaction. Genomics 5 874–879.

    Article  PubMed  CAS  Google Scholar 

  2. Hayashi, K. (1991) PCR-SSCP: A simple and sensitive method for detection of mutations in the genomic DNA. PCR Methods Applications 1, 34–38.

    CAS  Google Scholar 

  3. Hayashi, K. and Yandell, D. W. (1993) How sensitive is PCR-SSCP? Human Mutat. 2, 338–346.

    Article  CAS  Google Scholar 

  4. Sarkar, G., Yoon HS and Sommer, S. S. (1992) Screening for mutations by RNA single-strand conformation polymorphism (rSSCP): comparison with DNASSCP. Nucleic Acids Res. 20, 871–878.

    Article  PubMed  CAS  Google Scholar 

  5. Sheffield, V. C., Beck, J. S., Kwitek, A. E., Sandstrom, D. W., and Stone, E. M. (1993) The sensitivity of single-strand conformation polymorphism analysis for the detection of single base substitutions. Genomics 16, 325–332.

    Article  PubMed  CAS  Google Scholar 

  6. Ravnik-Glavac, M., Glavac, D., and Dean, M. (1994) Sensitivity of single-strand conformation polymorphism and heteroduplex method for mutation detection in the cystic fibrosis gene. Hum. Mol. Genet. 3, 801–807.

    Article  PubMed  CAS  Google Scholar 

  7. Leren, T. P., Solberg, K., Rodningen, O. K., Ose, L., Tonstad, S., and Berg, K. (1993) Evaluation of running conditions for SSCP analysis: application of SSCP for detection of point mutations in the LDL receptor gene. PCR Methods Applications 3, 159–162.

    CAS  Google Scholar 

  8. Glavac, D. and Dean, M. (1993) Optimization of the single-strand conformation polymorphism (SSCP) technique for detection of point mutations. Human Mutat. 2, 404–414.

    Article  CAS  Google Scholar 

  9. Liu, Q. and Sommer, S. S. (1994) Parameters affecting the sensitivities of dideoxy fingerprinting and SSCP. PCR Methods Applications 4, 97–108.

    CAS  Google Scholar 

  10. Keen, J., Lester, D., Inglehearn, C., Curtis, A., and Bhattacharya, S. (1991) Rapid detection of single base mismatches as heteroduplexes on Hydrolink gels. Trends Genet. 7, 5.

    Article  PubMed  CAS  Google Scholar 

  11. Bönnemann, C. G., Modi, R., Noguchi, S., Mizuno, Y., Yoshida, M., Gussoni, E., et al. (1995) β-sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of the sarcoglycan complex. Nature Genet. 11, 266–273.

    Article  PubMed  Google Scholar 

  12. Lim, L. E., Duclos, F., Broux, O., Bourg, N., Sunada, Y., Allamand, V., et al. (1995) β-sarcoglycan (43 DAG): Characterization and involvement in a recessive form of limb-girdle muscular dystrophy linked to chromosome 4q12. Nature Genet. 11, 257–265.

    Article  PubMed  CAS  Google Scholar 

  13. Bönnemann, C. G., Passos-Bueno, R., McNally, E. M., Vainzoff, M., de Sá Moreira, E., S.K. Marie, et al. (1996) Genomic screening for β-sarcoglycan mutations: Missense mutations may cause severe limb-girdle muscular dystrophy type 2E (LGMD 2E). Hum. Mol. Genet. 5, 1953–1961.

    Article  Google Scholar 

  14. Duggan, D. J., Gorospe, J. R., Fanin, M., Hoffman, E. P., and Angelini, C. (1997) Mutations in the sarcoglycan genes in patients with myopathy. N. Engl. J. Med. 336, 618–624.

    Article  PubMed  CAS  Google Scholar 

  15. Ginjaar, H. B., vanderKooi, A., Ceelie, H., Kneppers, A.L. J., Barth, P. G., Busch, H. F. M., Wokke, J. H. J., et al. (1997) Sarcoglycanopathies in Dutch patients with autosomal recessive limb girdle muscular dystrophies. Neuromusc. Disord 7, 440, GP441B.446.

    Article  Google Scholar 

  16. dosSantos, M.R., Rieira, E. M., Jorge, P., Pires, M. M., and Guimaräes, A. (1998) Novel mutation (Y184C) in exon 4 of the beta-sarcoglycan gene identified in a portuguese patient. Mutations in brief no. 177. On line. Hum. Mutat. 12, 214–215.

    CAS  Google Scholar 

  17. Vainzof, M., Passos-Bueno, M. R., Moreira, E. S., Pavanello, R. C. M., Marie, S. K., Anderson, L. V. B., et al. (1996) The sarcoglycan complex in the six autosomal recessive limb-girdle muscular dystrophies. Hum. Mol. Genet. 5, 1963–1969.

    Article  PubMed  CAS  Google Scholar 

  18. Nigro, V., deSa Moriera, E., Piluso, G., Vainzof, M., Belsito, A., Politano, L., et al. (1996) the 5q autosomal recessive limb-girdle muscular dystrophy (LGMD 2F) is caused by a mutation in the-sarcoglycan gene. Nature Genet. 14, 195–198.

    Article  PubMed  CAS  Google Scholar 

  19. BenHamida, M., Attia, N., Chabouni, H., and Fardeau, M. (1983) Autosomal recessive severe, proximal myopathy in children, common in Tunisia. Rev. Neurol. 139, 289–297.

    CAS  Google Scholar 

  20. Ben Othmane, K., Ben Hamida, M., Pericak-Vance, M. A., Ben Hamida, C., Blel, S., Carter, S. C., et al. (1992) Linkage of Tunisian autosomal recessive Duchennelike muscular dystrophy to the pericentromeric region of chromosome 13q. Nature Genet. 2, 315–317.

    Article  PubMed  CAS  Google Scholar 

  21. Noguchi, S., McNally, E. M., Ben Othmane, K., Hagiwara, Y., Mizuno, Y., Yoshida, M., et al. (1995) Mutations in the dystrophin-associated protein-sarcoglycan in chromosome 13 muscular dystrophy. Science 270, 819–822.

    Article  PubMed  CAS  Google Scholar 

  22. McNally, E. M., Duggan, D. J., Gorospe, J. R., Bönnemann, C. G., Fanin, M., Lidov, H.G.W., et al. (1996) Mutations in the carboxyl-terminus of-sarcoglycan cause muscular dystrophy. Hum. Mol. Genet. 5, 1841–1847.

    Article  PubMed  CAS  Google Scholar 

  23. McNally, E. M., Passos-Bueno, R., Bönnemann, C. G., Vainzoff, M., De Sá Moreira, E., Lidov, H. G. W., et al. (1996) Mild and severe muscular dystrophy caused by a single-sarcoglycan mutation. Am. J. Hum. Genet. 59, 1040–1047.

    PubMed  CAS  Google Scholar 

  24. Piccolo, F., Jeanpierre, M., Leturcq, F., Dode, C., Azibi, K., Toutain, A., et al. (1996) A founder mutation in the gamma-sarcoglycan gene of gypsies possibly predating their migration out of India. Hum. Mol. Genet. 5, 2019–2022.

    Article  PubMed  CAS  Google Scholar 

  25. Sewry, C. A., Taylor, J., Anderson, L. V., Ozawa, E., Pogue, R., Piccolo, F., et al. (1996) Abnormalities in alpha-, beta-and gamma-sarcoglycan in patients with limb-girdle muscular dystrophy. Neuromusc. Disord. 6, 467–474.

    Article  PubMed  CAS  Google Scholar 

  26. Ben Hamida, M., Ben Hamida, C., Zouari, M., Belal, S. and Hentati, F. (1996) Limbgirdle muscular dystrophy 2C: clinical aspects. Neuromusc. Disord. 6, 493–494.

    Article  PubMed  CAS  Google Scholar 

  27. Vidal-Puig, A. and Moller, D. E. (1994) Comparative sensitivity of alternative single-strand conformation polymorphism (SSCP) methods. Biotechniques 17, 490–492, 494, 496.

    PubMed  CAS  Google Scholar 

  28. Ferrie, R. M., Schwarz, M. J., Robertson, N. H., Vaudin, S., Super, M., Malone, G., and Little, S. (1992) Development, multiplexing, and application of ARMS tests for common mutations in the CFTR gene. Am. J. Hum. Genet. 51, 251–262.

    PubMed  CAS  Google Scholar 

  29. Little, S. (1995) ARMS analysis of point mutations, in Current Protocols in Human Genetics (Dracopoli, N. C., et al., eda.), John Wiley, New York,. 9.8.1–9.8.12.

    Google Scholar 

  30. Ben Othmane, K., Speer, M. C., Stauffer, J., Blel, S., Middleton, L., Ben Hamida, C., et al. (1995) Evidence for linkage disequilibrium in chromosome 13-linked Duchenne-like muscular dystrophy (LGMD2C). Am. J. Hum. Genet. 57, 732–734.

    PubMed  CAS  Google Scholar 

  31. Maniatis, T., Fritsch, E. F., and Sambrook, J. (1990) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  32. Muragaki, Y., Mundlos, S., Upton, J., and Olsen, B. R. (1996) Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science 272, 548–551.

    Article  PubMed  CAS  Google Scholar 

  33. Mundlos, S., Otto, F., Mundlos, C., Mulliken, J. B., Aylsworth, A. S., Albright, S., et al. (1997) Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89, 773–779.

    Article  PubMed  CAS  Google Scholar 

  34. Brais, B., Bouchard, J-P, Xie, Y. G., Rochefort, D. L., Chren, N., Tomé, F. M. S., et al. (1998) Short GCG expansion in the PABP2 gene cause oculo-pharyngeal muscular dystrophy. Nature Genet. 18, 164–167.

    Article  PubMed  CAS  Google Scholar 

  35. Hayashi, K. (1996) PCR SSCP: single-strand conformation polymorphism analysis of PCR products, in Laboratory Protocols for Mutation Detection (Landegren, U., ed.), Oxford University Press, Oxford, UK,. 14–22.

    Google Scholar 

  36. Bönnemann, C. G., Wong, J., Ben Hamida, C., Ben Hamida, M., et. al. (1998) LGMD 2E in Tunisia is caused by a missense mutation Arg91Leu in β-sarcoglycan. Neuromuscular Disorders 8, 193–197.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Bönnemann, C.G., Kunkel, L.M. (2001). Mutation Detection in β- and γ-Sarcoglycan (LGMD2E and LGMD2C). In: Bushby, K.M., Anderson, L.V. (eds) Muscular Dystrophy. Methods in Molecular Medicine, vol 43. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-138-8:227

Download citation

  • DOI: https://doi.org/10.1385/1-59259-138-8:227

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-695-6

  • Online ISBN: 978-1-59259-138-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics