Advertisement

Options for Development of Gene-Based Therapy for Muscular Dystrophy

  • Matthew G. Dunckley
  • George Dickson
Part of the Methods in Molecular Medicine book series (MIMM, volume 43)

Abstract

The gene involved in Duchenne and Becker muscular dystrophies (DMD/ BMD) was the first human gene to be successfully identified by the approach of reverse genetics, or positional cloning (1), leading to the recognition of this approach as a valid and useful way of identifying genes for which the biochemical product is unknown. Since then, the genes causing the majority of other MDs have also been mapped, sequenced, and their protein products identified (2). Meanwhile, the development of the necessary tools for incorporating genetic material into living cells (gene transfer) has moved from the first attempts to express synthetic reporter genes in cultured cells, through in vivo studies in animal models, to the onset of clinical trials. Indeed, DMD was one of the first inherited diseases thought likely to benefit from gene therapy (GT) (3). Although it is now accepted that DMD may be more difficult to treat in this way than some other single-gene disorders, this and other MDs remain suitable candidates for GT for a number of reasons.

Keywords

Gene Transfer Dystrophin Gene Nondividing Cell Muscle Creatine Kinase Dystrophin Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Koenig, M., Hoffman, E. P., Bertelson, C. J., Monaco, A. P., Feener, C., and Kunkel, L. M. (1987) Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organisation of the DMD gene in normal and affected individuals. Cell 50, 509–517.PubMedCrossRefGoogle Scholar
  2. 2.
    Ozawa, E., Noguchi, S., Mizuno, Y., Hagiwara, Y., and Yoshida, M. (1998) From dystrophinopathy to sarcoglycanopathy: evolution of a concept of muscular dystrophy. Muscle Nerve 21, 421–438.PubMedCrossRefGoogle Scholar
  3. 3.
    Verma, I. M. and Naviaux, R. K. (1991) Human gene therapy. Curr. Opin. Genet. Dev. 1, 54–59.PubMedCrossRefGoogle Scholar
  4. 4.
    Kaplan, J.-C. and Fontaine, B. (1999) Neuromuscular disorders: gene location. Neuromusc. Disord. 9, I–XIV.Google Scholar
  5. 5.
    Wells, D. J., Wells, K. E., Asante, E. A., Turner, G., Sunada, Y., Campbell, K. P., Walsh, F. S., and Dickson, G. (1995) Expression of human full-length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne Muscular Dystrophy. Hum. Mol. Genet. 4, 1245–1250.PubMedCrossRefGoogle Scholar
  6. 6.
    Fassati, A., Wells, D. J., Sgro-Serpente, P. A., Walsh, F. S., Brown, S. C., Strong, P. N., and Dickson, G. (1997) Genetic correction of dystrophin deficiency and skeletal muscle remodelling in adult mdx mouse via transplantation of retroviral producer cells. J. Clin. Invest. 100, 620–628.PubMedCrossRefGoogle Scholar
  7. 7.
    Bulfield, G., Siller, W. G., Wight, P. A. L., and Moore, K. J.(1984) X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc. Natl. Acad. Sci. USA 81, 1189–1192.PubMedCrossRefGoogle Scholar
  8. 8.
    Kornegay, J. N., Tuler, S., Miller, D. M., and Levesque, D. C. (1988) Muscular dystrophy in a litter of golden retriever dogs. Muscle Nerve 11, 1056–1064.PubMedCrossRefGoogle Scholar
  9. 9.
    Cooper, B. J., Winand, N. J., Stedman, H., et al. (1988) The homologue of the Duchenne locus is defective in X-linked muscular dystrophy of dogs. Nature 334, 154–156.PubMedCrossRefGoogle Scholar
  10. 10.
    Howell, J. M., Lochmuller, H., O’Hara, A., Fletcher, S., Kakulas, B. A., Massie, B., Nalbatoglu, J., and Karpati, G. (1998) High level dystrophin expression after adenoviral-mediated dystrophin minigene transfer to skeletal muscle of dystrophic dogs: prolongation of expression with immunosuppression. Hum.Gene Ther. 9, 629–634.PubMedCrossRefGoogle Scholar
  11. 11.
    Deconinck, A. E., Rafael, J. A., Skinner, J. A., Brown, S. C., Potter, A. C., Metzinger, L., et al. (1997) Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 90, 717–727.PubMedCrossRefGoogle Scholar
  12. 12.
    Grady, R. M., Teng, H., Nichol, M. C., Cunningham, J. C., Wilkinson, R. S., and Sanes, J. R. (1997) Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell 90, 729–738.PubMedCrossRefGoogle Scholar
  13. 13.
    Grounds, M. D. and Yablonka-Reuveni, Z. (1994) Molecular and cell biology of skeletal muscle regeneration, in Molecular and Cell Biology of Muscular Dystrophy (Partridge, T., ed.), Chapman and Hall, London, pp. 210–238.Google Scholar
  14. 14.
    Wolff, J. A., Dowty, M. E., Jiao, S., Repetto, G., Berg, R. K., Ludtke, J. J., and Williams, P. (1992) Expression of naked plasmids by cultured myotubes and entry of plasmids into T tubules and caveolae of mammalian skeletal muscle. J. Cell Sci. 103, 1249–1259.PubMedGoogle Scholar
  15. 15.
    Morgan, J. E. (1994) Cell and gene therapy in Duchenne muscular dystrophy. Hum. Gene Ther. 5, 165–173.PubMedCrossRefGoogle Scholar
  16. 16.
    DenDunnen, J. T., Grootscholten, P. M., Dauwerse, J. G., Walker, A. P., Monaco, A. P., Butler, R., et al. (1992) Reconstruction of the 2.4 Mb human DMD-gene by homologous YAC recombination. Hum. Mol. Genet. 1, 19–28.CrossRefGoogle Scholar
  17. 17.
    Gnirke, A. and Huxley, C. (1991) Transfer of the human HPRT and GART genes from yeast to mammalian cells by microinjection of YAC DNA. Somat. Cell Mol. Genet. 17, 573–580.PubMedCrossRefGoogle Scholar
  18. 18.
    Strauss, W. M. and Jaenisch, R. (1992) Molecular complementation of a collagen mutation in mammalian cells using yeast artificial chromosomes. EMBO J. 11, 417–421.PubMedGoogle Scholar
  19. 19.
    Lee, C., Pearlman, J., Chamberlain, J., and Caskey, C. (1991) Expression of recombinant dystrophin and its localization to the cell membrane. Nature 349, 334–336.PubMedCrossRefGoogle Scholar
  20. 20.
    Dickson, G., Love, D. R., Davies, K. E., Wells, K. E., Piper, T. A., and Walsh, F. S. (1991) Human dystrophin gene transfer: production and expression of a functional recombinant DNA-based gene. Hum. Genet. 88, 53–58.PubMedCrossRefGoogle Scholar
  21. 21.
    England, S. B., Nicholson, L. V. B., Johnson, M. A., Forrest, S. M., Love, D. R., Zubrzycka-Gaarn, E. E., et al. (1990) Very mild muscular dystrophy associated with deletion of 46% of dystrophin. Nature 343, 180–182.PubMedCrossRefGoogle Scholar
  22. 22.
    Cox, G. A., Cole, N. M., Matsumura, K., Phelps, S. F., Hauschka, S. D., Campbell, K. P., Faulkner, J. A., and Chamberlain, J. S. (1993) Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature 364, 725–729.PubMedCrossRefGoogle Scholar
  23. 23.
    Phelps, S. E., Hauser, M. A., Cole, N. M., Rafael, J. A., Hinkle, R. T., Faulkner, J. A., and Chamberlain, J. S. (1995) Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum. Mol. Genet. 4, 1251–1258.PubMedCrossRefGoogle Scholar
  24. 24.
    Sewry, C. A., Sansome, A., Clerk, A., Sherratt, T. G., Hasson, N., Rodillo, E., et al. (1993) Manifesting carriers of Xp21 muscular dystrophy; lack of correlation between dystrophin expression and clinical weakness. Neuromusc. Disord. 3, 141–148.PubMedCrossRefGoogle Scholar
  25. 25.
    Bushby, K. M. D., Goodship, J. A., Nicholson, L. V. B., Johnson, M. A., Haggerty, I. D., and Gardner-Medwin, D. (1993)Neuromusc. Disord. 3, 57–64.PubMedCrossRefGoogle Scholar
  26. 26.
    Bonilla, E., Schmidt, B., Samitt, C. E., Miranda, A. F., Hays, A. P., DeOliveira, A. B. S., et al. (1988) Normal and dystrophin-deficient muscle fibers in carriers of the gene for Duchenne muscular dystrophy. Am. J. Pathol. 133, 440–445.PubMedGoogle Scholar
  27. 27.
    Pavlath, G. K., Rich, K., Webster, S. G., and Blau, H. M. (1989) Localisation of muscle gene products in nuclear domains. Nature 337, 570–573.PubMedCrossRefGoogle Scholar
  28. 28.
    Noursadeghi, M., Walsh, F. S., Heiman-Patterson, T., and Dickson, G. (1993) Trans-activation of the murine dystrophin gene in human-mouse hybrid myotubes. FEBS Lett. 320, 155–159.PubMedCrossRefGoogle Scholar
  29. 29.
    Ahn, A. H. and Kunkel, L. M. (1993) The structural and functional diversity of dystrophin. Nature Genet. 3, 283–291.PubMedCrossRefGoogle Scholar
  30. 30.
    Kaufman, H., Schlom, J., and Kantor, J.(1991) A recombinant vaccinia virus expressing human carcinoembryonic antigen (CEA). Int. J. Cancer 48, 900–907.PubMedCrossRefGoogle Scholar
  31. 31.
    Huard, J., Goins, W. F., and Glorioso, J. C. (1995) Herpes simplex virus type 1 vector mediated gene transfer to muscle. Gene Ther. 2, 385–392.PubMedGoogle Scholar
  32. 32.
    Xiao, X., Li, J., and Samulski, R. J. (1996) Efficient long-term gene transfer into muscle of immunocompetent mice by adeno-associated virus vector. J.Virol. 70, 8098–8108.PubMedGoogle Scholar
  33. 33.
    Feero, W. G., Rosenblatt, J. D., Huard, J., Watkins, S. C., Epperly, M., Clemens, P. R., et al. (1997) Viral gene delivery to skeletal muscle: insights on maturation-dependent loss of fiber infectivity for adenovirus and herpes simplex type 1 viral vectors. Hum. Gene Ther. 8, 371–380.PubMedCrossRefGoogle Scholar
  34. 34.
    Fassati, A., Dunckley, M. G., and Dickson, G. (1995) Retroviral vectors, in Molecular and Cell Biology of Human Gene Therapeutics (Dickson, G., ed.), Chapman and Hall, London, pp. 1–19.CrossRefGoogle Scholar
  35. 35.
    Miller, A. D. and Buttimore, C. (1986) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell. Biol. 6, 2895–2902.PubMedGoogle Scholar
  36. 36.
    Hajihosseini, M., Iavechev, L., and Price, J. (1993) Evidence that retroviruses integrate into post-replication host DNA. EMBO J. 13, 4969–4974.Google Scholar
  37. 37.
    Dunckley, M. G., Love, D. R., Davies, K. E., Walsh, F. S., Morris, G. E., and Dickson, G. (1992) Retroviral-mediated transfer of a dystrophin minigene into mdx mouse myoblasts in vitro. FEBS Lett. 296, 128–134.PubMedCrossRefGoogle Scholar
  38. 38.
    Salminen, A., Elson, H. F., Mickley, L. A., Fojo, A. T., and Gottesman, M. M. (1991) Implantation of recombinant rat myocytes into adult skeletal muscle: a potential gene therapy. Hum. Gene Ther. 2, 15–26.PubMedCrossRefGoogle Scholar
  39. 39.
    Dunckley, M. G., Wells, D. J., Walsh, F. S., and Dickson, G. (1993) Direct retroviral-mediated transfeur of a dystrophin minigene into mdx mouse muscle in vivo. Hum. Mol. Genet. 2, 717–723.PubMedCrossRefGoogle Scholar
  40. 40.
    Fassati, A., Wells, D. J., Walsh, F. S., and Dickson, G. (1996) Transplantation of retroviral producer cells for in vivo gene transfer into mouse skeletal muscle. Hum. Gene Ther. 7, 595–602.PubMedCrossRefGoogle Scholar
  41. 41.
    Parrish E. P., Cifuentes-Diaz C., Li Z. L., Vicart P., Paulin D., Dreyfus P. A., et al. (1996) Targeting widespread sites of damage in dystrophic muscle: engrafted macrophages as potential shuttles. Gene Ther. 3, 13–20.PubMedGoogle Scholar
  42. 42.
    Kavanaugh, M. P., Miller, D. G., Zhang, W., Law, W., Kozak, S. L., Kabat, D., and Miller, A. D. (1994) Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc. Natl. Acad. Sci. USA 91, 7071–7075.PubMedCrossRefGoogle Scholar
  43. 43.
    Harris, J. D. and Lemoine, N. (1996) Strategies for targeted gene therapy. TIG 12, 400–405.PubMedCrossRefGoogle Scholar
  44. 44.
    Russell, S. J., Hawkins, R. E., and Winter, G. (1993) Retroviral vectors displaying functional antibody fragments. Nucleic Acids Res. 21, 1081–1085.PubMedCrossRefGoogle Scholar
  45. 45.
    Fassati, A., Bardoni, A., Sironi, M., Wells, D. J., Bresolin, N., Scarlatto, G., et al. (1998) Insertion of two independent enhancers in the long terminal repeat of a self-inactivating vector results in high-titer retroviral vectors with tissue-specific expression. Hum. Gene Ther. 9, 2459–2468.PubMedCrossRefGoogle Scholar
  46. 46.
    Ferrari, G., Salvatori, G., Rossi, C., Cossu, G., and Mavilio, F. (1995) A retroviral vector containing a muscle-specific enhancer drives gene expression only in differentiated muscle fibers. Hum. Gene Ther. 6, 733–742.PubMedCrossRefGoogle Scholar
  47. 47.
    Fassati, A., Takahara, Y., Walsh, F. S., and Dickson, G. (1994) Production of high titre helper-free recombinant retroviral vectors by lipofection. Nucleic Acids Res. 22, 1117–1118.PubMedCrossRefGoogle Scholar
  48. 48.
    Burns, J. C., Friedmann, T., Driever, W., Burrascano, M., and Yee J.-K. (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 90, 8033–8037.PubMedCrossRefGoogle Scholar
  49. 49.
    Yee, J. K., Miyanohara, A., LaPorte, P., Bouic, K., Burns, J. C., and Friedmann, T. (1994) A general method for generation of high titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc. Natl. Acad. Sci. USA 91, 9564–9568.PubMedCrossRefGoogle Scholar
  50. 50.
    Takeuchi, Y., Cosset, F. L. C., Lachmann, P. J., Okada, H., Weiss, R. A., and Collins, M. K. L. (1994) Type C retrovirus inactivation by human complement is determined by both the viral genome and the producer cell. J. Virol. 68, 8001–8007.PubMedGoogle Scholar
  51. 51.
    Rother, R. P., Squinto, S. P., Mason, J. M., and Rollins, S. A. (1995) Protection of retroviral vector particles in human blood through complement inhibition. Hum. Gene Ther. 6, 429–435.PubMedCrossRefGoogle Scholar
  52. 52.
    Lochmuller, H., Petrof, B., Pari, G., Larochelle, N., Dodelet, V., Wang, Q., et al. (1996) Transient immunosuppression by FK506 permits a sustained high-level dystrophin expression after adenovirus-mediated dystrophin minigene transfer to skeletal muscles of adult dystrophic (mdx) mice. Gene Ther. 3, 706–716.PubMedGoogle Scholar
  53. 53.
    Miyake, K., Suzuki, N., Matsuoka, H., Tohyama, T., and Shimada, T. (1998) Stable integration of human HIV-based retroviral vectors into the chromosomes of nondividing cells. Hum. Gene Ther. 9, 465–475.CrossRefGoogle Scholar
  54. 54.
    Poeschla, E. M., Wong-Staal, F., and Looney, D. J. (1998) Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nature Med. 4, 354–357.PubMedCrossRefGoogle Scholar
  55. 55.
    Graham, F. L., Smiley, J., Russel, W. C., and Nairn, R. (1977) Characteristics of a human cell line transformed by DNA from human adenovirus 5. J. Gen. Virol. 36, 59–72.PubMedCrossRefGoogle Scholar
  56. 56.
    Amalfitano, A., Begy, C. R., and Chamberlain, J. S. (1996) Improved adenovirus packaging cell lines to support the growth of replication-defective gene delivery vectors. Proc. Natl. Acad. Sci. USA 93, 3352–3356.PubMedCrossRefGoogle Scholar
  57. 57.
    McGrory, W. J., Bautista, D. S., and Graham, F. L. (1988) A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5. Virology 163, 614–617.PubMedCrossRefGoogle Scholar
  58. 58.
    Horwitz, M. S. (1990) Adenoviridae and their replication, in Virology, 2nd ed. (Fields, B. N., Knipe, D. M., et al., eds.), Raven Press, New York. pp. 1679–1741.Google Scholar
  59. 59.
    Lee, M. G., Kremer, E. J., and Perricaudet, M.(1995) Adenoviral vectors, in Molecular & Cell Biology of Human Gene Therapeutics. (Dickson, G., ed.), Chapman & Hall, London, pp. 20–32.CrossRefGoogle Scholar
  60. 60.
    Pauly, D. F., Johns, D. C., Matelis, L. A., Lawrence, J. H., Byrne, B. J., and Kessler, P. D. (1998) Complete correction of acid-glucosidase deficiency in Pompe disease fibroblasts in vitro, and lysosomally targeted expression in neonatal rat cardiac and skeletal muscle. Gene Ther. 5, 473–480.PubMedCrossRefGoogle Scholar
  61. 61.
    Michael, S. I., Hong, J. S., Curiel, D. T., and Engler, J. A. (1995) Addition of a short peptide ligand to the adenovirus fiber protein. Gene Ther. 2, 660–668.PubMedGoogle Scholar
  62. 62.
    Larochelle, N., Lochmuller, H., Zhao, J., Jani, A., Hallauer, P., Hastings, K. E. M., et al. (1997). Efficient muscle-specific transgene expression after adenovirus-mediated gene transfer in mice using a 1.35kb muscle creatine kinase promoter/ enhancer. Gene Ther. 4, 465–472.PubMedCrossRefGoogle Scholar
  63. 63.
    Floyd, S. S., Clemens, P. R., Ontell, M. R., Kochanek, S., Day, C. S., Young, J., et al. (1998) Ex-vivo gene transfer using adenoviral-mediated full-length dystrophin delivery to dystrophic muscle. Gene Ther. 5, 19–30.PubMedCrossRefGoogle Scholar
  64. 64.
    Acsadi, G., Jani, A., Massie, B., Simoneau, M., Holland, P., Blaschuk, K., and Karpati, G. (1994) Differential efficiency of adenovirus-mediated in vivo gene transfer into skeletal muscle cells of different maturity. Hum. Mol. Genet. 3, 579–584.PubMedCrossRefGoogle Scholar
  65. 65.
    Acsadi, G., Massie, B., and Jani, A. (1995) Adenovirus-mediated gene transfer into striated muscles. J. Mol. Med. 73, 165–180.PubMedCrossRefGoogle Scholar
  66. 66.
    Turner, G., Couture, L. A., Smith, A. E., Piper, T., Wells, D. J., and Dickson, G. (1994) Adenoviral vectors for gene transfer of full length human dystrophin cDNAs. J. Cell. Biochem. 18D(Suppl.), W432.Google Scholar
  67. 67.
    Turner, G., Dunckley, M. G. and Dickson, G. (1997) Gene therapy of Duchenne muscular dystrophy, in Dystrophin: Gene, Protein and Cell Biology (Brown, S. C. and Lucy, J. A., eds.), Cambridge University Press, Cambridge, UK, pp. 274–309.Google Scholar
  68. 68.
    Yang, Y., Nunes, F. A., Berencsi, K., et al. (1994). Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc. Natl. Acad. Sci. USA 91, 4407–4411.PubMedCrossRefGoogle Scholar
  69. 69.
    Michou, A. I., Santoro, L., Christ, M., Julliard, V., Pavirani, A., and Mehtali, M. (1997) Adenovirus-mediated gene transfer: influence of transgene, mouse strain and type of immune response on persistence of transgene expression. Gene Ther. 4, 473–482.PubMedCrossRefGoogle Scholar
  70. 70.
    Simon, R. H., Engelhardt, J. F., Yang, Y., Zepeda, M., Weber-Pendleton, S., Grossman, M., and Wilson, J. M. (1993) Adenovirus-mediated transfer of the CFTR gene to lung of non-human primates: toxicity study. Hum. Gene Ther. 4, 771–780.PubMedCrossRefGoogle Scholar
  71. 71.
    Yang, Y., Trinchieri, G., and Wilson, J. M. (1995) Recombinant IL-12 prevents formation of blocking IgA antibodies to recombinant adenovirus and allows repeated gene therapy to mouse lung. Nature Med. 1, 890–893.PubMedCrossRefGoogle Scholar
  72. 72.
    Gooding, L. R., Elmore, L. W., Tollefson, A. E., Brady, H. A., and Wold, W. S. M. (1988) A 14 700 MW protein from the E3 region of adenovirus inhibits cytolysis by tumour necrosis factor. Cell 53, 341–346.PubMedCrossRefGoogle Scholar
  73. 73.
    Engelhardt, J. F., Litzky, L., and Wilson, J. M. (1994) Prolonged transgene expression in Cotton rat lung with recombinant adenovirus defective in E2A. Hum. Gene Ther. 5, 1217–1229.PubMedCrossRefGoogle Scholar
  74. 74.
    Bett, A. J., Prevec, L., and Graham, F. L. (1993) Packaging capacity and stability of adenovirus type 5 vectors. J. Virol. 67, 5911–5921.PubMedGoogle Scholar
  75. 75.
    Ragot, T., Vincent, N., Chafey, P., Vigne, E., Gilgenkrantz, H., Couton, D., et al. (1993) Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature 361, 647–650.PubMedCrossRefGoogle Scholar
  76. 76.
    Vincent, N., Ragot, T., Gilgenkrantz, H., Couton, D., Chafey, P., Gregoire, A., Briand, P., Kaplan, J-C., Kahn, A., and Perricaudet, M. (1993) Long-term correction of mouse dystrophic degeneration by adenovirus-mediated transfer of a minidystrophin gene. Nature Genet. 5, 130–134.PubMedCrossRefGoogle Scholar
  77. 77.
    Stratford-Perricaudet, L. D., Makeh, I., Perricaudet, M., and Briand, P. (1992) Widespread long-term gene transfer to mouse skeletal muscles and heart. J. Clin. Invest. 90, 626–630.PubMedCrossRefGoogle Scholar
  78. 78.
    Deconinck, N., Ragot, T., Marechal, G., Perricaudet, M., and Gillis, J. M. (1996) Functional protection of dystrophic mouse (mdx) muscles after adenovirus-mediated transfer of a dystrophin minigene. Proc. Natl. Acad. Sci. USA 93, 3570–3574.PubMedCrossRefGoogle Scholar
  79. 79.
    Zabner, J., Couture, L. A., Gregory, R. J., Graham, S. M., Smith, A. E., and Welsh, M. J. (1993) Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 75, 207–216.PubMedCrossRefGoogle Scholar
  80. 80.
    Clemens, P. R., Krause, T. L., Chan, S., Korb, K. E., Graham, F. L., and Caskey, C. T. (1995) Recombinant truncated dystrophin minigenes: construction, expression and adenoviral delivery. Hum. Gene Ther. 6, 1477–1485.PubMedCrossRefGoogle Scholar
  81. 81.
    Mitani, K., Graham, F. L., Caskey, C. T., and Kochanek, S. (1995) Rescue, propagation, and partial purification of a helper virus-dependent adenovirus vector. Proc. Natl. Acad. Sci. USA 92, 3854–3858.PubMedCrossRefGoogle Scholar
  82. 82.
    Parks, R. J., Chen, L., Auton, M., Sankar, U., Rudnicki, M., and Graham, F. L. (1996) Helper-dependent adenovirus vector system: removal of helper virus by cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. USA 93, 13,565–13,570.PubMedCrossRefGoogle Scholar
  83. 83.
    Kumar-Singh, R. and Chamberlain, J. S. (1996) Encapsidated adenovirus minichromosomes allow delivery and expression of a 14kb dystrophin cDNA to muscle cells. Hum. Mol. Genet. 5, 913–921.PubMedCrossRefGoogle Scholar
  84. 84.
    Clemens, P. R., Kochanek, S., Sunada, Y., Chan, S., Chen, H. H., Campbell, K. P., and Caskey, C. T. (1996) In vivo muscle gene transfer of full-length dystrophin with an adenoviral vector that lacks all viral genes. Gene Ther. 3, 965–972.PubMedGoogle Scholar
  85. 85.
    Monahan, P. E., Samulski, R. J., Tazelaar, J., Xiao, X., Nichols, T. C., Bellinger, D. A., Read, M. S., and Walsh, C. E. (1998) Direct intramuscular injection with recombinant AAV vectors results in sustained expression in a dog model of haemophilia. Gene Ther. 5, 40–49.PubMedCrossRefGoogle Scholar
  86. 86.
    Fisher, K. J., Jooss, K., Alston, J., Yang, Y., Haecker, S. E., High, K., et al. (1997) Recombinant adeno-associated virus for muscle-directed gene therapy. Nature Med. 3, 306–312.PubMedCrossRefGoogle Scholar
  87. 87.
    Acsadi, G., Dickson, G., Love, D. R., Jani, A., Walsh, F. S., Gurusinghe, A., Wolff, J. A., and Davies, K. E. (1991) Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs. Nature 352, 815–818.PubMedCrossRefGoogle Scholar
  88. 88.
    Wicks, I. P., Howell, M. L., Hancock, T., Kohsaka, H., Olee, T., and Carson, D. (1995) Bacterial lipopolysaccharide copurifies with plasmid DNA: implications for animal models and human gene therapy. Hum. Gene Ther. 6, 317–323.PubMedCrossRefGoogle Scholar
  89. 89.
    Skarli, M., Kiri, A., Vrbova, G., Lee, C. A., and Goldspink, G. (1998) Myosin regulatory elements as vectors for gene transfer by intramuscular injection. Gene Ther. 5, 514–520.PubMedCrossRefGoogle Scholar
  90. 90.
    Mir, L. M., Bureau, M. F., Rangara, R., Schwartz, B., and Scherman, D. (1998) Longterm high level in vivo gene expression after electric-pulse-mediated gene transfer into skeletal muscle. C. R. Acad. Sci. III 321, 893–899.PubMedCrossRefGoogle Scholar
  91. 91.
    Decrouy, A., Renaud, J. M., Davis, H. L., Lunde, J. A., Dickson, G., and Jasmin, B. J. (1997) Mini-dystrophin gene transfer in mdx4cv diaphragm muscle fibers increases sarcolemmal stability. Gene Ther. 4, 401–408.PubMedCrossRefGoogle Scholar
  92. 92.
    Decrouy, A., Renaud, J. M., Lunde, J. A., Dickson, G., and Jasmin, B. J. (1998) Mini-and full-length dystrophin gene transfer induces the recovery of nitric oxide synthase at the sarcolemma of mdx4cv skeletal muscle fibers. Gene Ther. 5, 59–64.PubMedCrossRefGoogle Scholar
  93. 93.
    Wolff, J. A., et al. (1990) Direct gene transfer to mouse muscle in vivo. Science 247, 1465–1468.PubMedCrossRefGoogle Scholar
  94. 94.
    Schwartz, B., Benoist, C., Abdallah, B., Scherman, D., Behr, J-P., and Demeneix, B. A. (1995) Lipospermine-based gene transfer into newborn mouse brain is optimised by a low lipospermine/DNA charge ratio. Hum. Gene Ther. 6, 1515–1524.PubMedCrossRefGoogle Scholar
  95. 95.
    Vitiello, L., Chonn, A., Wasserman, J. D., Duff, C., and Worton, R. G. (1996) Condensation of plasmid DNA with polylysine improves liposome-mediated gene transfer into established primary muscle cells. Gene Ther. 3, 396–404.PubMedGoogle Scholar
  96. 96.
    Dodds, E., Dunckley, M. G., Naujoks, K., Michaelis, U., and Dickson, G. (1998) Lipofection of cultured mouse muscle cells: a direct comparison of Lipofectamine and DOSPER. Gene Ther. 5, 542–551.PubMedCrossRefGoogle Scholar
  97. 97.
    Trivedi, R. A. and Dickson, G. (1995) Liposome-mediated gene transfer into normal and dystrophin-deficient mouse myoblasts. J. Neurochem. 64, 2230–2238.PubMedCrossRefGoogle Scholar
  98. 98.
    McCarter, G. C., Denetclaw, W. F., Reddy, P., and Steinhardt, R. A. (1997) Lipofection of a cDNA plasmid containing the dystrophin gene lowers intracellular free calcium and calcium leak channel activity in mdx myotubes. Gene Ther. 4, 483–487.PubMedCrossRefGoogle Scholar
  99. 99.
    Yanagihara, I., Inui, K., Dickson, G., Turner, G., Piper, T., Kaneda, Y., and Okada, S. (1996) Expression of full-length human dystrophin cDNA in mdx mouse muscle by HVJ-liposome injection. Gene Ther. 3, 549–553.PubMedGoogle Scholar
  100. 100.
    Hart, S. L., Harbottle, R. P., Cooper, R., Miller, A., Williamson, R., and Coutelle, C. (1995) Gene delivery and expression mediated by an integrin-binding peptide. Gene Ther. 2, 552–554.PubMedGoogle Scholar
  101. 101.
    Hart, S. L., Arancibia-Carcamo, C. V., Wolfert, M. A., Mailhos, C., O’Reilly, N. J., Ali, R. R., et al. (1998) Lipid-mediated enhancement of transfection by a nonviral integrin-targeting vector. Hum. Gene Ther. 9, 575–585.PubMedCrossRefGoogle Scholar
  102. 102.
    Blake, D. J., Tinsley, J. M., and Davies, K. E. (1993) The emerging family of dystrophin-related proteins. Trends Cell Biol. 4, 19–23.CrossRefGoogle Scholar
  103. 103.
    Clerk, A., Morris, G. E., Dubowitz, V., et al. (1993) Dystrophin-related protein, utrophin, in normal and dystrophic human foetal skeletal muscle. Histochem. J. 25, 554–561.PubMedGoogle Scholar
  104. 104.
    Campanelli, J. T., Roberds, S. L., Campbell, K. P., and Scheller, R. H. (1994) A role for dystrophin-associated glycoproteins and utrophin in agrin-induced AChR clustering. Cell 77, 663–674.PubMedCrossRefGoogle Scholar
  105. 105.
    Gee, S. H., Montanaro, F., Lindenbaum, M. H., and Carbonetto, S.(1994) Dystroglycan-, a dystrophin-associated glycoprotein, is a functional agrin receptor. Cell 77, 675–686.PubMedCrossRefGoogle Scholar
  106. 106.
    Karpati, G., Carpenter, S., Morris, G. E., Davies, K. E., Guerin, C., and Holland, P. (1993) Localization and quantitation of the chromosome 6-encoded dystrophinrelated protein in normal and pathological human muscle. J. Neuropathol. Exp. Neurol. 52, 119–128.PubMedCrossRefGoogle Scholar
  107. 107.
    Tinsley, J. M. and Davies, K. E. (1993) Utrophin: a potential replacement for dystrophin Neuromusc. Disord. 3, 537–539.PubMedCrossRefGoogle Scholar
  108. 108.
    Pons, F., Robert, A., Marini, J. F., and Leger, J. J. (1994) Does utrophin expression in muscles of mdx mice during postnatal development functionally compensate for dystrophin deficiency J. Neurol. Sci. 122, 162–170.PubMedCrossRefGoogle Scholar
  109. 109.
    Gilbert, R., Nalbanoglu, J., Tinsley, J. M., Massie, B., Davies, K. E., and Karpati, G. (1998) Efficient utrophin expression following adenovirus gene transfer in dystrophic muscle. Biophys. Biochem. Res. Com. 242, 244–247.CrossRefGoogle Scholar
  110. 110.
    Wilton, S. D., Dye, D. E., and Laing, N. G. (1997) Dystrophin gene transcripts skipping the mdx mutation. Muscle Nerve 20, 728–734.PubMedCrossRefGoogle Scholar
  111. 111.
    Dominski, Z. and Kole, R. (1993) Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 90, 8673–8677.PubMedCrossRefGoogle Scholar
  112. 112.
    Dunckley, M. G., Eperon, I. C., Manoharan, M., Villiet, P., and Dickson, G. (1998) Modification of splicing in the dystrophin gene in cultured mdx muscle cells by antisense oligoribonucleotides. Hum. Mol. Genet. 7, 1083–1090.PubMedCrossRefGoogle Scholar
  113. 113.
    Derossi, D., Chassaing, G., and Prochiantz, A. (1998) Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol. 8, 84–87.PubMedGoogle Scholar
  114. 114.
    Ye, S., Cole-Strauss, A. C., Frank, B., and Kmiec, E. B. (1998) Targeted gene correction: a new strategy for molecular medicine. Mol. Med. Today 4, 431–437.PubMedCrossRefGoogle Scholar
  115. 115.
    Brennan, K. J. and Hardeman, E. C. (1988) Quantitative analysis of the human alpha-skeletal actin gene in transgenic mice. J. Biol. Chem. 268, 719–725.Google Scholar
  116. 116.
    Wang, Y., Xu, J., Pierson, T., O’Malley B. W., and Tsai, S. Y. (1997) Positive and negative regulation of gene expression in eukaryotic cells with an inducible transcriptional regulator. Gene Ther. 4, 432–441.PubMedCrossRefGoogle Scholar
  117. 117.
    Klamut, H. J., Gangopadhyay, S. B., Worton, R. G., and Ray, P. N. (1990) Molecular and functional analysis of the muscle-specific promoter region of the Duchenne muscular dystrophy gene. Mol. Cell. Biol. 10, 193–205.PubMedGoogle Scholar
  118. 118.
    Davis, H. L. and Jasmin, B. J. (1993) Direct gene transfer into mouse diaphragm. FEBS Lett. 333, 146–150.PubMedCrossRefGoogle Scholar
  119. 119.
    Smith, T. G., Mehaffey, M. G., Kayda, D. B., et al. (1993) Adenovirus-mediated expression of therapeutic plasma levels of human factor IX in mice. Nature Genet. 5, 397–402.PubMedCrossRefGoogle Scholar
  120. 120.
    Huard, J., Lochmuller, H., Acsadi, G., Jani, A., Massie, B., and Karpati, G. (1995) The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants. Gene Ther. 2, 107–115.PubMedGoogle Scholar
  121. 121.
    Kessler, D. A., Siegel, J. P., Noguchi, P. D., Zoon, K. C., Feiden, K. L., and Woodcock, J. (1993) Regulation of somatic-cell therapy and gene therapy by the food and drug administration. N. Engl. J. Med. 329, 1169–1173PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa NJ 2001

Authors and Affiliations

  • Matthew G. Dunckley
    • 1
  • George Dickson
    • 2
  1. 1.Division of Biochemistry, School of Biological SciencesUniversity of LondonEghamUK
  2. 2.Division of Biochemistry, School of Biological SciencesUniversity of LondonEghamUK

Personalised recommendations