Skip to main content

Transgenic Animal Models

  • Protocol
  • 1049 Accesses

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 58))

Abstract

Cancer is a prevalent and poorly understood disease in human populations. It is generally viewed as a complex, genetic, multistep process involving a series of independent events, each of which creates an incremental phenotypic aberration. For example, the capabilities for extended proliferation, invasion of adjacent tissue, and distant metastasis might each be acquired independently by a cancer cell (1-4). The molecular basis underlying the ability of tumor cells to metastasize from the primary site of growth to other tissues is a major challenge in understanding oncogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Foulds, L. (1954) The experimental study of tumor progression: a review. Cancer Res. 14, 327–339.

    CAS  Google Scholar 

  2. Fearon, E. R. and Vogelstein, B. (1990) A genetic model for colorectal tumori-genesis. Cell 61, 759–767.

    Article  CAS  Google Scholar 

  3. Vogelstein, B. and Kinzler, K. W. (1993) The multistep nature of cancer. Trends Genet. 9, 138–141.

    Article  CAS  Google Scholar 

  4. Kinzler, K. and Vogelstein, B. (1996) Lesson from hereditary colorectal cancer. Cell 87, 159–170.

    Article  CAS  Google Scholar 

  5. Gordon, J. W., Scangos, G. A., Plotkin, D. J., Barbosa, J. A., and Ruddle, F. H. (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci. USA 77, 380–384.

    Article  Google Scholar 

  6. Constantini, F. and Lacy, E. (1981) Introduction of a rabbit β-globin gene into the mouse germ line. Nature 294, 92–94.

    Article  Google Scholar 

  7. Corey, S. and Adams, J. M. (1988) Transgenic mice and oncogenesis. Annu. Rev. Immunol. 6, 25–48.

    Article  Google Scholar 

  8. Hanahan, D. (1988) Dissecting multistep tumorigenesis in transgenic mice. Annu. Rev. Genet. 22,479–519.

    Article  CAS  Google Scholar 

  9. Adams, J. M. and Cory, S. (1991) Transgenic models of tumor development. Sci-ence 254,1161–1167.

    Article  CAS  Google Scholar 

  10. Cardiff, R. D. and Muller, W. J. (1993) Transgenic mouse models of mammary tumorigenesis. Cancer Surv. 16, 97–113.

    CAS  Google Scholar 

  11. Christofori, G. and Hanahan, D. (1994) Molecular dissection of multistage tumorigenesis in transgenic mice. Semin. Cancer Biol. 5, 3–12.

    CAS  Google Scholar 

  12. Webster, M. A. and Muller, W. J. (1994) Mammary tumorigenesis and metastasis in transgenic mice. Semin. Cancer Biol. 5, 69–76.

    CAS  Google Scholar 

  13. Macleod, K. F. and Jacks, T. (1999) Insights into cancer from transgenic mouse models. J. Pathol. 187, 43–60.

    Article  CAS  Google Scholar 

  14. Muller, W. J., Sinn, E., Pattengale, P. K., Wallace, R., and Leder, P. (1988) Single-step induction of mammary adenocarcinoma in transgenic mice bearing the acti-vated c-neu oncogene. Cell 54, 105–115.

    Article  CAS  Google Scholar 

  15. Guy, C. T., Cardiff, R. D., and Muller, W. J. (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol. Cell Biol. 12, 954–961.

    CAS  Google Scholar 

  16. Guy, C. T., Webster, M. A., Schaller, M., Parsons, T. J., Cardiff, R. D., and Muller, W. J. (1992) Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl. Acad. Sci. USA 89, 10578–10582.

    Article  CAS  Google Scholar 

  17. Andreas, A. C., Schonenberger, B., Groner, B., Henninghausen, L., Le Meur, M., and Gerlinger, P. (1987) Ha-ras oncogene expression directed by milk protein gene promoter; tissue specificity, hormonal regulation, and tumor induction in transgenic mice. Proc. Natl. Acad. Sci. USA 84, 1299–1303.

    Article  Google Scholar 

  18. Nielsen, L. L., Discafani, C. M. Gurnani, M., and Tyler, R. D. (1991) Histopathol-ogy of salivary gland and mammary gland tumors in transgenic mice expressing a human Ha-ras oncogene. Cancer Res. 51, 3762–3767.

    CAS  Google Scholar 

  19. Tsukamoto, A. S., Grosschedl, R., Guzman, R. C., Parslow, T., and Varmus, H. E. (1988) Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55,619–625.

    Article  CAS  Google Scholar 

  20. Jhappan, C., Gallahan, D., Stahle, C., Chu, E., Smith, G.H., Merlino, G., and Callahan, R. (1992) Expression of a Notch related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev. 6, 345–355.

    Article  CAS  Google Scholar 

  21. Gallahan, D., Jhappan, C., Robinson, G., Hennighausen, L., Sharp, R., Kordon, E., et al. (1996) Expression of a truncated Int3 gene in developing mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res. 56, 1775–1785.

    CAS  Google Scholar 

  22. Sandgren, E. P., Schroeder, J. A., Qui, T. H., Palmiter, R. D., Brinster, R. L., and Lee D. C. (1995) Inhibition of mammary gland involution is associated with transforming growth factor α but not c-myc-induced tumorigenesis in transgenic mice. Cancer Res. 55, 3915–3927.

    CAS  Google Scholar 

  23. Daphna-Iken, D., Shankar, D. B., Lawshe, A., Ornitz, D. M., Shackleford, G. M., and MacArthur, C. A. (1998) MMTV-Fgf8 transgenic mice develop mammary and salivary gland neoplasia and ovarian stromal hyperplasia. Oncogene 17, 2711–2717.

    Article  CAS  Google Scholar 

  24. Ambartsumian, N. S., Griogorian, M. S., Larsen, I. F., Karlstrom, O., Sidenius, N., Rygaard, J., et al. (1996) Metastasis of mammary carcinomas in GRS/A hybrid mice transgenic for the mts1 gene. Oncogenes 13, 1621–1630.

    CAS  Google Scholar 

  25. Wilkie, T. M., Schmidt, R. A., Baetscher, M., and Messing, A. (1994) Smooth muscle and bone neoplasms in transgenic mice expressing SV40 T antigen. Oncogenes 9, 2889–2895.

    CAS  Google Scholar 

  26. Gingrich, J. R., Barrios, R. J., Morton, R. A., Boyce, B. F., DeMayo, F. J., Finegold, M. J., et al. (1996) Metastatic prostate cancer in a transgenic mouse. Cancer Res. 56, 4096–4102.

    CAS  Google Scholar 

  27. Perez-Stable, C., Altman, N. H., Mechta, P. P., Deftos, L. J., and Roos, B. A. (1997) Prostate cancer progression, metastasis, and gene expression in transgenic mice. Cancer Res. 57, 900–906.

    CAS  Google Scholar 

  28. Garabedian, E. M., Humphrey, P. A., and Gordon, J. I. (1998) A transgenic mouse model of metastatic prostate cancer originating from neuroendocrine cells. Proc. Natl. Acad. Sci. USA 95, 15382–15387.

    Article  CAS  Google Scholar 

  29. Zhang, Z-T., Pak, J., Shapiro, E., Sun, T-T., and Wu, X-R. (1999) Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Res. 59, 3512–3517.

    CAS  Google Scholar 

  30. Otsuka, T., Takayama, H., Sharp, R., Celli, G., LaRochelle, W. J., Bottaro, D. P., et al. (1998) c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res. 58, 5157–5167.

    CAS  Google Scholar 

  31. Yang, J-T., Liu, C-Z., and Iannaccone, P. (1995) The HPV 16 genome induces carcinomas and T-cell lymphomas in transgenic mice. Am. J. Pathol. 147, 68–78.

    CAS  Google Scholar 

  32. Penna, D., Schmidt, A., and Beermann, F. (1998) Tumors of the retinal pigment epithelium metastasize to inguinal lymph nodes and spleen in tyrosinase-related protein-1/ SV40 T antigen transgenic mice. Oncogene 17, 2601–2607.

    Article  CAS  Google Scholar 

  33. Perl, A. K., Wilgenbus, P., Dahl, D., Semb, H., and Christofori, G. (1998) A causal role of E-cadherin in the transition from adenoma to carcinoma. Nature 392,286–291.

    Article  Google Scholar 

  34. Perl, A. K., Dahl, D., Wilgenbus, P., Semb, H., and Christofori, G. (1999) Reduced expression of neural cell adhesion molecule induces metastatic dissemination of pancreatic B tumor cells. Nat. Med. 5, 286–290.

    Article  CAS  Google Scholar 

  35. Grant, S. G. N., Seidman, I., Hanahan, D., and Bautch, V. L. (1991) Early inva-siveness characterizes metastatic carcinoid tumors in transgenic mice. Cancer Res. 51,4917–4923.

    CAS  Google Scholar 

  36. Davies, M. P. A., Rudland, P. S., Robertson, L., Parry, E. W., Jolicoeur, P., and Barraclough, R. (1996) Expression of the calcium-binding protein S100A4 (p9Ka) in MMTV-neu transgenic mice induces metastasis of mammary tumours. Cancer Res. 13, 1631–1637.

    CAS  Google Scholar 

  37. Nicolson, G. A. (1988) Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. Biochem. Biophys. Acta 948, 175–224.

    CAS  Google Scholar 

  38. Liotta, L. A. (1986) Tumor invasion and metastases-role of the extracellular matrix. Cancer Res. 46, 1–7.

    CAS  Google Scholar 

  39. Gunthert, U., Hofmann, M., Ruby, W., Reber, S., Zoller, M., Haubmann, I., et al. (1991) A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65, 13–24.

    Article  CAS  Google Scholar 

  40. Liotta, L. A., Steeg, P. S., and Stetler-Stevenson, W. G. (1991) Cancer, metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64, 327–336.

    Article  CAS  Google Scholar 

  41. Marshall, C. J. (1991) Tumor suppressor genes. Cell 64, 313–326.

    Article  CAS  Google Scholar 

  42. Lifsted, T., Le Voyer, T., Williams, M., Muller, W., Klein-Szanto, A., Buetow, K. H., and Hunter, W. (1998) Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int. J. Cancer 77, 640–644.

    Article  CAS  Google Scholar 

Further Reading

  • Hogan, B., Beddington, R., Constantini, F., and Lacy, E. (1994) Manipulating the Mouse Embryo: A Laboratory Manual. 2nd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Gordon, J. W. (1993) Transgenic animals: pronuclear injection, in Methods in Enzy-mology, Guide to Techniques in Mouse Development (Wassarman, P. M. and DePamphilis, M. L., eds.), Academic Press, San Diego, CA, pp. 747–799.

    Chapter  Google Scholar 

  • Murphy, D. and Carter, D. A., eds. (1993) Transgenesis Techniques: Principles and Protocols. Humana Press, Totowa, NJ.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Guy, C.T., Cardoso, G. (2001). Transgenic Animal Models. In: Brooks, S.A., Schumacher, U. (eds) Metastasis Research Protocols. Methods in Molecular Medicine, vol 58. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-137-X:231

Download citation

  • DOI: https://doi.org/10.1385/1-59259-137-X:231

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-0-89603-615-4

  • Online ISBN: 978-1-59259-137-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics