Skip to main content

Fluorescence itIn Situ Hybridization

  • Protocol
Metastasis Research Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 57))

  • 1057 Accesses

Abstract

In situ hybridization describes the annealing of a labeled nucleic acid to complementary nucleic acid sequences in a fixed target (e.g., chromosomes, free nuclei, nuclei in tissue sections, and DNA) followed by visualisation of the location of the probe. Since its development about 30 yr ago (1,2), it has transformed into a highly effective and rapid technique for uses such as characterizing chromosome aberrations, gene mapping, and marker ordering as well as expression studies.

All in situ hybridization originally used radioactively labeled probes, and methodology for in situ hybridization using radioactive probes is covered in Chapter 13 by Poulsom. The strict regulations on radioactivity, long exposure times, and some practical difficulties with the use of radioactive labels limited the wide application of the technique. In the 1980s, several methods using non-radioactive labeling were developed (3-7). The ease and effectiveness of fluorescence methods (fluorescence in situ hybridization [FISH]) in particular have now almost rendered the radioisotopic techniques obsolete. FISH has been developed to incorporate chromosome painting and the analysis of the whole genome for aberrations using the approaches of comparative genomic hybridization (CGH; described in detail in Chapter 15 by Roylance), multifluor FISH (M-FISH), and spectral karyotyping (SKY).

In FISH, essentially the probes are labeled either directly or indirectly with various fluorochrome dyes such as fluorescein isothiocyanate (FITC) and tetramethyl rhodamine that fluoresce at different wavelengths when excited by ultraviolet (UV) light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pardue, M. L. and Gall, J. G. (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc. Natl. Acad. Sci. USA 64,600–604.

    Article  CAS  PubMed  Google Scholar 

  2. John, H., Birnstiel, M., and Jones, K. (1969) RNA-DNA hybrids at the cytological level. Nature 223, 582–587.

    Article  CAS  PubMed  Google Scholar 

  3. Bauman, J. G. J., Wiegant, J., Borst, P., and vanDuijn, P. (1980) A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochrome labeled RNA. Exp. Cell Res. 128,485–490.

    Article  CAS  PubMed  Google Scholar 

  4. Langer, P. R., Waldrop, A. A., and Ward, D. C. (1981) `Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc. Natl. Acad. USA 78,6633–6637.

    Article  CAS  Google Scholar 

  5. van Proijen-Knegt, A. C., van Hoek, J. F., Bauman, J. G., van Duijn, P., Wool, I. G., and van der Ploeg, M. (1982) In situ hybridization of DNA sequences in human metaphase chromosomes visualized by an indirect fluorescent immunocytochemical procedure. Exp. Cell Res. 141,397–407.

    Article  Google Scholar 

  6. Landegent, J. E., Jansen in de Wal, N., Baan, R. A., Hoeijmakers, J. H., and van der Ploeg, M. (1984) 2-Acetylaminofluorene-modified probes for the indirect hybridocytochemical detection of specific nucleic acid sequences. Exp. Cell Res. 153, 61–72.

    Article  CAS  PubMed  Google Scholar 

  7. Tchen, P., Fuchs, R. P. P., Sage, E., and Leng, M. (1984) Chemically modified nucleic acids as immuno-detectable probes in hybridization experiments. Proc. Natl. Acad. Sci. USA 81, 3470.

    Article  Google Scholar 

  8. Summersgill, B., Goker, H., Weber-Hall, S., Huddart, R., Horwich, A., and Shipley, J. (1997) Molecular cytogenetic analysis of adult testicular germ cell tumors and identification of regions of consensus copy number change. Br. J. Cancer 77, 305–313.

    Article  Google Scholar 

  9. Speicher, M. R., Stephen, G. B., and Ward, D. C. (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nature Genet. 12,368–375.

    Article  CAS  PubMed  Google Scholar 

  10. Schrock, E., du Manoir, S., Veldman, T., Schoell, B., Wienberg, J., FergusonSmith, M. A., et al. (1996) Multicolor spectral karyotyping of human chromosomes. Science 273, 494–497.

    Article  CAS  PubMed  Google Scholar 

  11. Landegent, J. E., Jansen in de Wal, N., Dirks, R. W., Baao, F., and van der Ploeg, M. (1987) Use of whole cosmid cloned genomic sequences for chromosomal localization by non-radioactive in situ hybridization. Hum. Genet. 77,366–370.

    Article  CAS  PubMed  Google Scholar 

  12. Lichter, P., Tang, C. J., Call, K., Hermanson, G., Evans, G. A., Housman, D., and Ward, D. C. (1990) High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247, 64–69.

    Article  CAS  PubMed  Google Scholar 

  13. Ioannou, P. A., Amemiya, C. T., Garnes, J., Kroisel, P. M., Shizuya, H., Chen, C., et al. (1994) A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat. Genet. 6, 84–89.

    Article  CAS  PubMed  Google Scholar 

  14. Shizuya, H., Birren, B., Kim, U., Mancino, V., Slepak, T., Tachiiri, Y., and Simon, M. (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using and F-factor-based vector. Proc. Natl. Acad. Sci. USA 89, 8794–8797.

    Article  CAS  PubMed  Google Scholar 

  15. Burke, D. T., Carle, G. F., and Olson, M. V. (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806–812.

    Article  CAS  PubMed  Google Scholar 

  16. Trask, B. J., Massa, H., Kenwrick, S., and Gitschier, J. (1991) Mapping of human chromosome Xq28 by two-color fluorescence in situ hybridization of DNA sequences to interphase nuclei. Am. J. Hum. Genet. 48, 1–15.

    CAS  PubMed  Google Scholar 

  17. Senger, G., Ragoussis, J., Trowsdale, J., and Sheer, D. (1993) Fine mapping of the MHC class II region within 6p21 and evaluation of probe ordering using interphase fluorescence in situ hybridization. Cytogenet. Cell Genet. 64,49–53.

    Article  CAS  PubMed  Google Scholar 

  18. Senger, G., Jones, T. A., Fidlerova, H., Sanseau, P., Trowsdale, J., Duff, M., and Sheer, D. (1994) Released chromatin: linearized DNA for high resolution fluorescence in situ hybridization. Hum. Mol. Genet. 3, 1275–1280.

    Article  CAS  PubMed  Google Scholar 

  19. Weber-Hall, S., McManus, A., Anderson, J., Nojima, T., Abe, S. Pritchard-Jones, K., and Shipley, J. (1996) Novel formation and amplification of the PAX7-FKHR fusion gene in a case of alveolar rhabdomyosarcoma. Genes Chromosom. Cancer 17,7–13.

    Article  CAS  PubMed  Google Scholar 

  20. Parra, I. and Windle, B. (1993) High resolution visual mapping of stretched DNA by fluorescent hybridization. Nat. Genet. 5, 17–21.

    Article  CAS  PubMed  Google Scholar 

  21. Nederlof, P. M. van der Flier, S. Wiegant, J. Raap, A. K., Tanke, H. J. Ploem, J. S., and van der Ploeg, M. (1990) Multiple fluorescence in situ hybridization. Cytometry 11, 126–131.

    Article  CAS  PubMed  Google Scholar 

  22. Nederlof, P. M. Robinson, D., Abuknesha, R. Hopman, A. H. Tanke, H. J., and Raap, A. K. (1989) Three-color fluorescence in situ hybridization for the simultaneous detection of multiple nucleid acid sequences. Cytometry 10, 20–27.

    Article  CAS  PubMed  Google Scholar 

  23. Ried, T. Baldini, A., Rand, T. C., and Ward, D. C. (1992) Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc. Natl. Acad. Sci. USA 89,1388–1392.

    Article  CAS  PubMed  Google Scholar 

  24. Dauwerse, J. G., Wiegant, J. Raap, A. K., Breuning, M. H., and van Ommen, G. J. (1992) Multiple colors by fluorescence in situ hybridization using ratio labeled DNA probes create a molecular karyotype. Hum. Mol. Genet.. 1,593–598.

    Article  CAS  PubMed  Google Scholar 

  25. Lu, Y.-J., Birdsall, S., Summersgill, B. Smedley, D., Osin, P., Fisher, C., and Shipley, J. (1999) Dual color fluorescence in situ hybridization to paraffinembedded samples to deduce the presence of the der(X)t(X; 18)(p 11.2;q 11.2) and involvement of either the SSX1 or SSX2 gene: a diagnostic and prognostic aid for synovial sarcoma. J. Pathol. 187, 490–496.

    Article  CAS  PubMed  Google Scholar 

  26. Fidlerova, H., Senger, G. Kost, M., Sanseau, P., and Sheer, D. (1994) Two simple procedures for releasing chromatin from routinely fixed cells for fluorescence in situ hybridization. Cytogenet. Cell Genet. 65, 203–205.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Goker, H., Shipley, J. (2001). Fluorescence itIn Situ Hybridization. In: Brooks, S.A., Schumacher, U. (eds) Metastasis Research Protocols. Methods in Molecular Medicine, vol 57. Humana Press. https://doi.org/10.1385/1-59259-136-1:199

Download citation

  • DOI: https://doi.org/10.1385/1-59259-136-1:199

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-610-9

  • Online ISBN: 978-1-59259-136-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics