Skip to main content

Mutational Analysis of Oncogenes and Tumor Suppressor Genes in Human Cancer Using Denaturing Gradient Gel Electrophoresis

  • Protocol

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 68))

Abstract

Denaturing gradient gel electrophoresis (DGGE) was introduced 20 years ago (1) as a gel system to separate DNA fragments. The seminal principle of this methodologic conquest was that DNA molecules were not separated according to size, as in conventional electrophoresis, but rather, according to base composition and sequence-related properties. Since then, the technology has been developed into a powerful, yet still challenging, method for detection of single base changes. In combination with polymerase chain reaction (PCR), it has been widely used by research and diagnostic laboratories in the analysis of cancer and inherited disease. The principles and potential applications of DGGE have been described in detail in a number of excellent reviews (24) and are outlined only briefly in the following sections.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fischer, S. G. and Lerman, L. S. (1979) Length-independent separation of DNA restriction. Cell 16, 191–200.

    Article  PubMed  CAS  Google Scholar 

  2. Myers, R. M., Maniatis, T., and Lerman, L. S. (1987) Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol. 155, 501–527.

    Article  PubMed  CAS  Google Scholar 

  3. Fodde, R. and Losekoot, M. (1994) Mutation detection by denaturing gradient gel electrophoresis (DGGE). Hum.Mutat. 3, 83–94.

    Article  PubMed  CAS  Google Scholar 

  4. Abrams, E. S. and Stanton, V. P. (1992) Use of denaturing gradient gel electrophoresis to study conformational transitions in nucleic acids. Methods Enzymol. 212, 71–104.

    Article  PubMed  CAS  Google Scholar 

  5. Fischer, S. G. and Lerman, L. S. (1983) DNA fragments differing by single basepair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc. Natl. Acad. Sci. USA 80, 1579–1583.

    Article  PubMed  CAS  Google Scholar 

  6. Sheffield, V. C., Cox, D. R., Lerman, L. S., and Myers, R. M. (1989) Attachment of a 40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction in improved detection of single-base changes. Proc. Natl. Acad. Sci. USA 86, 232–236.

    Article  PubMed  CAS  Google Scholar 

  7. Wartell, R. M., Hosseini, S., Powell, S., and Zhu, J. (1998) Detecting single base substitutions, mismatches and bulges in DNA by temperature gradient gel electrophoresis and related methods. J. Chromatogr. A. 806, 169–185.

    Article  PubMed  CAS  Google Scholar 

  8. Van Orsouw, N. J., Li, D., van der Vlies, P., Scheffer, H., Eng, C., Buys, C. H. C. M., Li, F. P., and Vijg, J. (1996) Mutational scanning of large genes by extensive PCR multiplexing and two-dimensional electrophoresis: application to the RB1 gene. Hum. Mol. Genet. 5, 755–761.

    Article  PubMed  Google Scholar 

  9. Guldberg, P., Grønbæk, K., Aggerholm, A., Platz, A., thor Straten, P., Ahrenkiel, V., Hokland, P., and Zeuthen, J. (1998) Detection of mutations in GC-rich DNA by bisulphite denaturing gradient gel electrophoresis. Nucleic AcidsRes. 26, 1548,1549.

    Google Scholar 

  10. Hovig, E., Smith-Sørensen, B., Brøgger, A., and Børresen, A. L. (1991) Constant denaturant gel electrophoresis, a modification of denaturing gradient gel electrophoresis, in mutation detection. Mutat.tRes. 262, 63–71.

    Article  CAS  Google Scholar 

  11. Cremonesi, L., Firpo, S., Ferrari, M., Righetti, P. G., and Gelfi, C. (1997) Doublegradient DGGE for optimized detection of DNA point mutations. Biotechniques 22, 326–330.

    PubMed  CAS  Google Scholar 

  12. Guldberg, P. and Güttler, F. (1994) ‘Broad-range’ DGGE for single-step mutation scanning of entire genes: application to human phenylalanine hydroxylase gene. Nucleic Acids Res. 22, 880,881.

    Article  Google Scholar 

  13. Nedergaard, T., Guldberg, P., Ralfkiaer, E., and Zeuthen, J. (1997) A one-step DGGE scanning method for detection of mutations in the K-, N-, and H-ras oncogenes: mutations at codons 12, 13 and 61 are rare in B-cell non-Hodgkin’s lymphoma. Intl.J.Cancer 71, 364–369.

    Article  CAS  Google Scholar 

  14. Guldberg, P., Nedergaard, T., Nielsen, H. J., Olsen, A. C., Ahrenkiel, V., and Zeuthen, J. (1997) Single-step DGGE-based mutation scanning of the p53 gene: application to genetic diagnosis of colorectal cancer. Hum.Mutat. 9, 348–355.

    Article  PubMed  CAS  Google Scholar 

  15. Guldberg, P., thor Straten, P., Birck, A., Ahrenkiel, V., Kirkin, A. F., and Zeuthen, J. (1997) Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res. 57, 3660-3663.

    Google Scholar 

  16. Grønbæk, K., thor Straten, P., Ralfkiaer, E., Ahrenkiel, V., Andersen, M. K., Hansen, N.E., Zeuthen, J., Hou-Jensen, K., and Guldberg, P. (1998) Somatic Fas mutations in non-Hodgkin’s lymphoma: association with extranodal disease and autoimmunity. Blood 92, 3018–3024.

    PubMed  Google Scholar 

  17. Guldberg, P., Kirkin, A. F., Grønbæk, K., thor Straten, P., Ahrenkiel, V. and Zeuthen, J. (1997) Complete scanning of the CDK4 gene by denaturing gradient gel electrophoresis: a novel missense mutation but low overall frequency of mutations in sporadic metastatic malignant melanoma. Intl.J.Cancer 72, 780–783.

    Article  CAS  Google Scholar 

  18. Lerman, L. S. and Silverstein, K. (1987) Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods Enzymol. 155, 482–501.

    Article  PubMed  CAS  Google Scholar 

  19. Abrams, E. S., Murdaugh, S. E., and Lerman, L. S. (1996) Intramolecular DNA melting between stable helical segments: melting theory and metastable states. Nucleic Acids Res. 23, 2775–2783.

    Article  Google Scholar 

  20. Costes, B., Girodon, E., Ghanem, N., Chassignol, M., Thuong, N. T., Dupret, D., and Goossens, M. (1993) Psoralen-modified oligonucleotide primers improve detection of mutations by denaturing gradient gel electrophoresis and provide an alternative to GC-clamping. Hum. Mol. Genet. 2, 393–397.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Guldberg, P., Grønbœk, K., Worm, J., Straten, P.t., Zeuthen, J. (2002). Mutational Analysis of Oncogenes and Tumor Suppressor Genes in Human Cancer Using Denaturing Gradient Gel Electrophoresis. In: Boultwood, J., Fidler, C. (eds) Molecular Analysis of Cancer. Methods in Molecular Medicine, vol 68. Humana Press. https://doi.org/10.1385/1-59259-135-3:125

Download citation

  • DOI: https://doi.org/10.1385/1-59259-135-3:125

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-622-2

  • Online ISBN: 978-1-59259-135-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics