Detection and Quantification of Leukemia-Specific Rearrangements

  • Andreas Hochhaus
Part of the Methods in Molecular Medicine book series (MIMM, volume 68)


A number of leukemia-specific chromosomal translocations have been identified that have been cloned and are appropriate markers for molecular studies (Table 1) (1, 2, 3, 4). In addition, leukemia nonspecific clonality markers, such as the junctional region of the rearranged immunoglobulin (Ig) and T-cell receptor (TCR) genes can be used for minimal residual disease studies. It is commonly accepted that the Ig heavy chain (IgH) gene junctional regions as well as the junctional regions of rearranged TCR-μ and TCR-δ can be used as targets for polymerase chain reaction (PCR) analysis (1,2). The detection and quantification of leukemia specific rearrangements will be explained on the example chronic myelogenous leukemia (CML), since this disease was the first human tumor associated with a specific chromosomal rearrangement and a specific fusion gene. The spectrum of molecular methods to detect fusion genes and their products has been established on CML during the last 15 years.
Table 1

Chromosomal Translocations Observed in Leukemias (Selection) (1-4)



Disease a








Igκ, MYC



MYK, Igλ





















HOX11, TCR-δ







AML M2, M4





CBFss, MYH11







8p11 MPD



Ph-negative CML, MDS




a B-ALL, B-lineage acute lymphoblastic leukemia; T-ALL, T-lineage acute lymphoblastic leukemia; AML, acute myelogenous leukemia; CML, chronic myelogenous leukemia; MDS, myelodysplastic syndrome; CMML, chromic myelomonocytic leukemia.


Chronic Myelogenous Leukemia Minimal Residual Disease Chronic Myelogenous Leukemia Cell Polymerase Chain Reaction Negativity Qualitative Polymerase Chain Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Carlo Stella, C., Mangoni, L., Dotti, G. P., and Rizzoli, V. (1995) Techniques for detection of minimal residual disease. Leuk. Lymphoma 18(Supp. 1), 75–80.PubMedGoogle Scholar
  2. 2.
    van Dongen, J. J., Szczepanski, T., de Bruijn, M. A. C., van de Beemd, M. W. M., de Bruin-Versteeg, S., Wijkhuijs, J. M., et al. (1996) Detection of minimal residual disease in acute leukemia patients. Cytokines Mol. Ther. 2, 121–133.PubMedGoogle Scholar
  3. 3.
    Campana, D. and Pui, C. H. (1995) Detection of minimal residual disease in acute leukemia: methodological advances and clinical significance. Blood 85, 1416–1434.PubMedGoogle Scholar
  4. 4.
    Reiter, A., Sohal, J., Kulkarni, S., Chase, A., Macdonald, D. H. C., Aguiar, R. C. T., et al. (1998) Consistent fusion of ZNF198 to the fibroblast growth factor receptor1 in thet(8;13)(p1 1;q12) myeloproliferative syndrome. Blood 92, 1735–1742.PubMedGoogle Scholar
  5. 5.
    Sawyers, C. L. (1999) Chronic myeloid leukemia. N. Engl. J. Med. 340, 1330–1340.PubMedGoogle Scholar
  6. 6.
    Virchow, R. (1845) Weisses Blut. Frorieps Notizen 36, 151–156.Google Scholar
  7. 7.
    Nowell, P. C. and Hungerford, D. A. (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132, 1497–1501.Google Scholar
  8. 8.
    Rowley, J. D. (1973) A new consistent chromosome abnormality in chronic myelogenous leukaemia detected by quinacrine fluorescence and Giemsa staining. Nature 243, 290–293.PubMedGoogle Scholar
  9. 9.
    Groffen, J., Stephenson, J. R., Heisterkamp, N., de Klein, A., Bartram, C. R., and Grosveld, G. (1984) Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36, 93–99.PubMedGoogle Scholar
  10. 10.
    Stam, K., Heisterkamp, N., Grosveld, G., de Klein, A., Verma, R. S., Coleman, M., et al. (1985) Evidence of a new chimeric bcr/c-abl mRNA in patients with chronic myelocytic leukemia and the Philadelphia chromosome. N. Engl. J. Med. 313, 1429–1433.PubMedGoogle Scholar
  11. 11.
    Daley, G. Q., van Etten, R. A., and Baltimore, D. (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247, 824–830.PubMedGoogle Scholar
  12. 12.
    Heisterkamp, N., Jenster, G., ten Hoeve, J., Zovich, D., Pattengale, P. K., and Groffen, J. (1990) Acute leukaemia in bcr/abl transgenic mice. Nature 344, 251–253.PubMedGoogle Scholar
  13. 13.
    Melo, J. V., Gordon, D. E., Cross, N. C. P., and Goldman, J. M. (1993) The ABL-BCR fusion gene is expressed in chronic myeloid leukemia. Blood 81, 158–165.PubMedGoogle Scholar
  14. 14.
    Lion, T. (1996) Monitoring of residual disease in chronic myelogenous leukemia: methodological approaches and clincal aspects. Leukemia 10, 896–906.PubMedGoogle Scholar
  15. 15.
    Kantarjian, H. M., Smith, T. L., O’Brien, S., Beran, M., Pierce, S., Talpaz, M., and the Leukemia Service (1995) Prolonged survival in chronic myelogenous leukemia after cytogenetic response to interferon-α therapy. Ann. Intern. Med. 122, 254–261.PubMedGoogle Scholar
  16. 16.
    Hook, E. B. (1977) Exclusion of chromosomal mosaicism: tables of 90%, 95%, and 99% confidence limits and comments on use. Am. J. Hum. Genet. 29, 94–97.PubMedGoogle Scholar
  17. 17.
    Cortes, J., Talpaz, M., O’Brien, S., Rios, M. B., Majlis, A., Keating, M., Freireich, E. J., and Kantarjian, H. (1998) Suppression on cytogenetic clonal evolution with interferon alfa therapy in patients with Philadelphia chromosome-positive chronic myelogenous leukemia. J. Clin. Oncol. 16, 3279–3285.PubMedGoogle Scholar
  18. 18.
    Kantarjian, H. M., Dixon, D., Keating, M. J., Talpaz, M., Walters, R. S., McCredie, K. B., and Freireich, E. J. (1988) Characteristics of accelerated disease in chronic myelogenous leukemia. Cancer 61, 1441–1446.PubMedGoogle Scholar
  19. 19.
    Tkachuk, D. C., Westbrook, C. A., Andreeff, M., Donlon, T. A., Cleary, M. L., Suryanarayan, K., et al. (1990) Detection of bcr-abl fusion in chronic myelogeneous leukemia by in situ hybridization. Science 250, 559–562.PubMedGoogle Scholar
  20. 20.
    Nacheva, E., Holloway, T., Brown, K., Bloxham, D., and Green, A. R. (1994) Philadelphia-negative chronic myeloid leukaemia: detection by FISH of BCR-ABL fusion gene localized either to chromosome 9 or chromosome 22. Br. J. Haematol. 87, 409–412.PubMedGoogle Scholar
  21. 21.
    Hochhaus, A., Reiter, A., Skladny, H., Melo, J. V., Sick, C., Berger, U., et al. (1996) A novel BCR-ABL fusion gene (e6a2) in a patient with Philadelphia chromosome negative chronic myelogenous leukemia. Blood 88, 2236–2240.PubMedGoogle Scholar
  22. 22.
    Melo, J. V. (1996) The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 88, 2375–2384.PubMedGoogle Scholar
  23. 23.
    Weber-Matthiesen, K., Winkemann, M., M÷ller-Hermelink, A., Schlegelberger, B., and Grote, W. (1992) Simultaneous fluorescence immunophenotyping and interphase cytogenetics: a contribution to characterization of tumor cells. J. Histochem. Cytochem. 40, 171–175.PubMedGoogle Scholar
  24. 24.
    Haferlach, T., Winkemann, M., Nickenig, C., Meeder, M., Ramm-Petersen, L., Schoch, R., et al. (1997) Which compartments are involved in Philadelphia-chromosome positive chronic myeloid leukaemia? An answer at the single cell level by combining May-Grünwald-Giemsa staining and fluorescence in situ hybridization techniques. Br. J. Haematol. 97, 99–106.PubMedGoogle Scholar
  25. 25.
    Bentz, M., Cabot, G., Moos, M., Speicher, M. R., Ganser, A., Lichter, P., and Döhner, H. (1994) Detection of chimeric BCR-ABL genes on bone marrow samples and blood smears in chronic myeloid and acute lymphoblastic leukemia by in situ hybridization. Blood 83, 1922–1928.PubMedGoogle Scholar
  26. 26.
    Garcia-Isidoro, M., Tabernero, M. D., Garcia, J. L., Najera, M. L., Hernandez, J. M., Wiegant, J., et al. (1997) Detection of the Mbcr/abl translocation in chronic myeloid leukemia by fluorescence in situ hybridization: comparison with conventional cytogenetics and implications for minimal residual disease detection. Hum. Pathol. 28, 154–159.PubMedGoogle Scholar
  27. 27.
    Chase, A., Grand, F., Zhang, J. G., Blackett, N., Goldman, J., and Gordon, M. (1997) Factors influencing the false positive and negative rates of BCR-ABL fluorescence in-situ hybridization. Genes Chromosomes Cancer 18, 246–253.PubMedGoogle Scholar
  28. 28.
    Cox Froncillo, M. C., Cantonetti, M., Masi, M., Lentini, R., Giudiceandrea, P., Maffei, L., et al. (1995) Cytogenetic analysis is non-informative for assessing the remission rate in chronic myeloid leukemia (CML) patients on interferon-alpha (IFN-alpha) therapy. Cancer Genet. Cytogenet. 84, 15–18.PubMedGoogle Scholar
  29. 29.
    M÷hlmann, J., Thaler, J., Hilbe, W., Bechter, O., Erdel, M., Utermann, G., and Duba, H. C. (1998) Fluorescence in situ hybridization (FISH) on peripheral blood smears for monitoring Philadelphia chromosome-positive chronic myeloid leukemia (CML) during interferon treatment: a new strategy for remission asssessment. Genes Chromosomes Cancer 21, 90–100.Google Scholar
  30. 30.
    Cox Froncillo, M. C., Maffei, L., Cantonetti, M., Del Poeta, G., Lentini, R., Bruno, A., et al. (1996) FISH analysis for CML monitoring? Ann. Hematol. 73, 113–119.Google Scholar
  31. 31.
    Tchirkov, A., Giollant, M., Tavernier, F., Briancon, G., Tournilhac, O., Kwiatkowski, F., et al. (1998) Interphase cytogenetics and competitive RT-PCR for residual disease monitoring in patients with chronic myeloid leukaemia during interferon-a therapy. Br. J. Haematol. 101, 552–557.PubMedGoogle Scholar
  32. 32.
    Verfaillie, C., Bhatia, R., Miller, W., Mortari, F., Roy, V., Burger, S., et al. (1996) BCR/ABL-negative primitive progenitors suitable for transplantation can be selected from the marrow of most early-chronic phase but not accelerated-phase chronic myelogenous leukemia patients. Blood 87, 4770–4779.PubMedGoogle Scholar
  33. 33.
    Kirk, J. A., Reems, J. A., Roecklein, B. A., Van Devanter, D. R., Bryant, E. M., Radich, J., et al. (1995) Benign marrow progenitors are enriched in the CD34+/ HLA-DRlo population but not in the CD34+/CD38lo population in chronic myeloid leukemia: an analysis using interphase fluorescence in situ hybridization. Blood 86, 737–743.PubMedGoogle Scholar
  34. 34.
    Sinclair, P. B., Green, A. R., Grace, C., and Nacheva, E. P. (1997) Improved sensitivity of BCR-ABL detection: a triple-probe three-color fluorescence in situ hybridization system. Blood 90, 1395–1402.PubMedGoogle Scholar
  35. 35.
    Buno, I., Wyatt, W. A., Zinsmeister, A. R., Dietz-Band, J., Silver, R. T., and Dewald, G. W. (1998) A special fluorescent in situ hybridization technique to study peripheral blood and assess the effectiveness of interferon therapy in chronic myeloid leukemia. Blood 92, 2315–2321.PubMedGoogle Scholar
  36. 36.
    Dewald, G. W., Wyatt, W. A., Juneau, A. L., Carlson, R. O., Zinsmeister, A. R., Jalal, S. M., et al. (1998) Highly sensitive fluorescence in situ hybridization method to detect double BCR/ABL fusion and monitor response to therapy in chronic myeloid leukemia. Blood 91, 3357–3365.PubMedGoogle Scholar
  37. 37.
    El Rifai, W., Ruutu, T., Vettentanta, K., Temtamy, S., and Knuutila, S. (1996) Minimal residual disease after allogeneic bone marrow transplantation for chronic myeloid leukaemia: a metaphase-FISH study. Br. J. Haematol. 92, 365–369.Google Scholar
  38. 38.
    Seong, D. C., Kantarjian, H. M., Ro, J. Y., Talpaz, M., Xu, J., Robinson, J. R., Deisseroth, A. B., et al. (1995) Hypermetaphase fluorescence in situ hybridization for quantitative monitoring of Philadelphia chromosome-positive cells in patients with chronic myelogenous leukemia during treatment. Blood 86, 2343–2349.PubMedGoogle Scholar
  39. 39.
    Seong, D., Giralt, S., Fischer, H., Hayes, K., Glassman, A., Arlinghaus, R., et al. (1997) Usefulness of detection of minimal residual disease by ′hypermetaphase′ fluorescent in situ hybridization after allogeneic BMT for chronic myelogenous leukemia. Bone Marrow Transplant. 19, 565–570.PubMedGoogle Scholar
  40. 40.
    Reiter, A., Skladny, H., Hochhaus, A., Seifarth, W., Heimpel, H., Bartram, C. R., et al. (1997) Molecular response of CML patients treated with interferon-α monitored by quantitative Southern blot analysis. Br. J. Haematol. 97, 86–93.PubMedGoogle Scholar
  41. 41.
    Fishleder, A. J., Shadrach, B., and Tuttle, C. (1989) bcr rearrangement: Potential false positive secondary to an EcoRI restriction fragment length polymorphism. Leukemia 3, 746–748.PubMedGoogle Scholar
  42. 42.
    Grossman, A., Mathew, A., O’Connell, M. P., Tiso, P., Distenfeld, A., and Benn, P. (1990) Multiple restriction enzyme digests are required to rule out polymorphism in the molecular diagnosis of chronic myeloid leukemia. Leukemia 4, 63–64.PubMedGoogle Scholar
  43. 43.
    Popenoe, D. W., Schaefer Rego, K., Mears, J. G., Bank, A., and Leibowitz, D. (1986) Frequent and extensive deletion during the 9;22 translocation in CML. Blood 68, 1123–1128.PubMedGoogle Scholar
  44. 44.
    Bartram, C. R., Bross Bach, U., Schmidt, H., and Waller, H. D. (1987) Philadelphia-positive chronic myelogenous leukemia with breakpoint 5′ of the breakpoint cluster region but within the bcr gene. Blut. 55, 505–511.PubMedGoogle Scholar
  45. 45.
    Saglio, G., Guerrasio, A., Rosso, C., Zaccaria, A., Tassinari, A., Serra, A., et al. (1990) New type of Bcr/Abl junction in Philadelphia chromosome-positive chronic myelogenous leukemia. Blood 76, 1819–1824.PubMedGoogle Scholar
  46. 46.
    Stock, W., Westbrook, C. A., Peterson, B., Arthur, D. C., Szatrowski, T. P., Silver, R. T., et al. (1997) Value of molecular monitoring during treatment of chronic myeloid leukemia: A Cancer and Leukemia Group B Study. J. Clin. Oncol. 15, 26–36.PubMedGoogle Scholar
  47. 47.
    Verschraegen, C. F., Talpaz, M., Hirsch Ginsberg, C. F., Pherwani, R., Rios, M. B., Stass, S. A., and Kantarjian, H. M. (1995) Quantification of the breakpoint cluster region rearrangement for clinical monitoring in Philadelphia chromosome-positive chronic myeloid leukemia. Blood 85, 2705–2710.PubMedGoogle Scholar
  48. 48.
    Steegmann, J. L., Requena, M. J., Casado, L. F., Pico, M., Panarrubia, M. J., Ferro, M. T., et al. (1996) Southern technique and cytogenetics are comple-mentary and must be used together in the evaluation of Ph1, M-BCR positive chronic myeloid leukemia (CML) patients treated with alpha interferon (IFN-ALPHA). Am. J. Hematol. 53, 169–174.PubMedGoogle Scholar
  49. 49.
    Yoffe, G., Blick, M., Kantarjian, H., Spitzer, G., Gutterman, J., and Talpaz, M. (1987) Molecular analysis of interferon-induced suppression of Philadelphia chromosome in patients with chronic myeloid leukemia. Blood 69, 961–963.PubMedGoogle Scholar
  50. 50.
    Guo, J. Q., Lian, J. Y., Xian, Y. M., Lee, M. S., Deisseroth, A. B., Stass, S. A., et al. (1994) BCR-ABL protein expression in peripheral blood cells of chronic myelogenous leukemia patients undergoing therapy. Blood 83, 3629–3637.PubMedGoogle Scholar
  51. 51.
    Guo, J. Q., Lian, J., Glassman, A., Talpaz, M., Kantarjian, H., Deisseroth, A. B., and Arlinghaus, R. B. (1996) Comparison of bcr-abl protein expression and Philadelphia chromosome analyses in chronic myelogenous leukemia patients. Am. J. Clin. Pathol. 106, 442–448.PubMedGoogle Scholar
  52. 52.
    Morgan, G. J., Hughes, T., Janssen, J. W., Gow, J., Guo, A. P., Goldman, J. M., et al. (1989) Polymerase chain reaction for detection of residual leukaemia. Lancet 1, 928,929.Google Scholar
  53. 53.
    Hughes, T., Martiat, P., Morgan, G., Sawyers, C., Witte, O. N., and Goldman, J. M. (1990) Significance of residual leukaemia transcripts after bone marrow transplant for CML. Lancet 335, 50.PubMedGoogle Scholar
  54. 54.
    Hughes, T., Janssen, J. W. G., Morgan, G., Martiat, P., Saglio, G., Pignon, J. M., et al. (1990) False-positive results with PCR to detect leukaemia-specific transcript. Lancet 335, 1037,1038.Google Scholar
  55. 55.
    Hughes, T. and Goldman, J. M. (1990) Improved results with PCR for chronic myeloid leukaemia. Lancet 336, 812.PubMedGoogle Scholar
  56. 56.
    Cross, N. C. P., Feng, L., Chase, A., Bungey, J., Hughes, T. P., and Goldman, J. M. (1993) Competitive polymerase chain reaction to estimate the number of BCR-ABL transcripts in chronic myeloid leukemia patients after bone marrow transplantation. Blood 82, 1929–1936.PubMedGoogle Scholar
  57. 57.
    Lion, T., Henn, T., Gaiger, A., Kalhs, P., and Gadner, H. (1993) Early detection of relapse after bone marrow transplantation in patients with chronic myelogenous leukaemia. Lancet 341, 275,276.Google Scholar
  58. 58.
    Malinge, M. C., Mahon, F. X., Delfau, M. H., Daheron, L., Kitzis, A., Guilhot, F., et al. (1992) Quantitative determination of the hybrid Bcr-Abl RNA in patients with chronic myelogenous leukaemia under interferon therapy. Br. J. Haematol. 82, 701–707.PubMedGoogle Scholar
  59. 59.
    Hochhaus, A., Lin, F., Reiter, A., Skladny, H., Mason, P. J., van Rhee, F., et al. (1996) Quantification of residual disease in chronic myelogenous leukemia patients on interferon-α therapy by competitive polymerase chain reaction. Blood 87, 1549–1555.PubMedGoogle Scholar
  60. 60.
    Cross, N. C. P., Melo, J. V., Feng, L., and Goldman, J. M. (1994) An optimized multiplex polymerase chain reaction (PCR) for detection of BCR-ABL fusion mRNAs in haematological disorders. Leukemia 8, 186–189.PubMedGoogle Scholar
  61. 61.
    Melo, J. V., Myint, H., Galton, D. A., and Goldman, J. M. (1994) P190BCR-ABL chronic myeloid leukaemia: the missing link with chronic myelomonocytic leukaemia? Leukemia 8, 208–211.PubMedGoogle Scholar
  62. 62.
    Clarkson, B. and Strife, A. (1993) Linkage of proliferative and maturational abnormalities in chronic myelogenous leukemia and relevance to treatment. Leukemia 7, 1683–1721.PubMedGoogle Scholar
  63. 63.
    Morley, A. (1998) Quantifying leukemia. N. Engl. J. Med. 339, 627–629.PubMedGoogle Scholar
  64. 64.
    Cross, N. C. P. (1997) Assessing residual leukaemia. Baillieres Clin. Haematol 10, 389–403.PubMedGoogle Scholar
  65. 65.
    Cross, N. C. P., Feng, L., Zhang, J. G., and Goldman, J. M. (1994) Competitive PCR to monitor residual disease after bone marrow transplantation for chronic myeloid leukaemia, in Molecular Diagnosis and Monitoring of Leukaemia and Lymphoma (Borden, E. C., Goldman, J. M., and Grignani, F., eds.), Ares-Serono Symposia Publications, Ares-Serono, Rome, pp. 119–126.Google Scholar
  66. 66.
    Potter, M. N., Cross, N. C. P., van Dongen, J. J., Saglio, G., Oakhill, A., Bartram, C. R., and Goldman, J. M. (1993) Molecular evidence of minimal residual disease after treatment for leukaemia and lymphoma: an updated meeting report and review. Leukemia 7, 1302–1314.PubMedGoogle Scholar
  67. 67.
    Zhang, J. G., Lin, F., Chase, A., Goldman, J. M., and Cross, N. C. P. (1996) Comparison of genomic DNA and cDNA for detection of residual disease after treatment of chronic myeloid leukemia with allogeneic bone marrow transplantation. Blood 87, 2588–2593.PubMedGoogle Scholar
  68. 68.
    Hochhaus, A., Lin, F., Reiter, A., Skladny, H., van Rhee, F., Shepherd, P. C. A., et al. (1995) Variable numbers of BCR-ABL transcripts persist in CML patients who achieve complete cytogenetic remission with interferon-α. Br. J. Haematol. 91, 126–131.PubMedGoogle Scholar
  69. 69.
    Biernaux, C., Loos, M., Sels, A., Huez, G., and Stryckmans, P. (1995) Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 88, 3118–3122.Google Scholar
  70. 70.
    Bose, S., Deininger, M., Gora-Tybor, J., Goldman, J. M., and Melo, J. V. (1998) The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biological significance and implications for the assessment of minimal residual disease. Blood 92, 3362–3367.PubMedGoogle Scholar
  71. 71.
    Melo, J. V. (1996) The molecular biology of chronic myeloid leukaemia. Leukemia 10, 751–756.PubMedGoogle Scholar
  72. 72.
    Lion, T., Izraeli, S., Henn, T., Gaiger, A., Mor, W., and Gadner, H. (1992) Monitoring of residual disease in chronic myelogenous leukemia by quantitative polymerase chain reaction. Leukemia 6, 495–499.PubMedGoogle Scholar
  73. 73.
    Thompson, J. D., Brodsky, I., and Yunis, J. J. (1992) Molecular quantification of residual disease in chronic myelogenous leukemia after bone marrow transplantation. Blood 79, 1629–1635.PubMedGoogle Scholar
  74. 74.
    Nagel, S., Schmidt, M., Thiede, C., Huhn, D., and Neubauer, A. (1996) Quantification of Bcr-Abl transcripts in chronic myelogenous leukemia (CML) using standardized, internally controlled, competitive differential PCR (CD-PCR). Nucleic Acids Res. 24, 4102,4103.Google Scholar
  75. 75.
    Lin, F., van Rhee, F., Goldman, J. M., and Cross, N. C. P. (1996) Kinetics of increasing BCR-ABL transcript numbers in chronic myeloid leukemia patients who relapse after bone marrow transplantation. Blood 87, 4473–4478.PubMedGoogle Scholar
  76. 76.
    Delage, R., Soiffer, R. J., Dear, K., and Ritz, J. (1991) Clinical significance of bcr-abl gene rearrangement detected by polymerase chain reaction after allo-geneic bone marrow transplantation in chronic myelogenous leukemia. Blood 78, 2759–2767.PubMedGoogle Scholar
  77. 77.
    Lin, F., Kirkland, M. A., van Rhee, F., Chase, A., Coulthard, S., Bungey, J., et al. (1996) Molecular analysis of transient cytogenetic relapse after allogeneic bone marrow transplantation for chronic myeloid leukaemia. Bone Marrow Transplant. 18, 1147–1152.PubMedGoogle Scholar
  78. 78.
    van Rhee, F., Lin, F., Cullis, J. O., Spencer, A., Cross, N. C. P., Chase, A., et al. (1994) Relapse of chronic myeloid leukemia after allogeneic bone marrow transplant: the case for giving donor leukocyte transfusions before the onset of hematologic relapse. Blood 83, 3377–3383.PubMedGoogle Scholar
  79. 79.
    Raanani, P., Dazzi, F., Sohal, J., Szydlo, R., van Rhee, F., Reiter, A., et al. (1997) The rate and kinetics of molecular response to donor leucocyte transfusions in chronic myeloid leukaemia patients treated for relapse after allogeneic bone marrow transplantation. Br. J. Haematol. 99, 945–950.PubMedGoogle Scholar
  80. 80.
    Corsetti, M. T., Lerma, E., Dejana, A., Basta, P., Ferrara, R., Benvenuto, F., et al. (1999) Quantitative competitive reverse transcriptase-polymerase chain reaction for BCR-ABL on Philadelphia-negative leukaphereses allows the selection of low-contaminated peripheral blood progenitor cells for autografting in chronic myelogenous leukemia. Leukemia 13, 999–1008.PubMedGoogle Scholar
  81. 81.
    Hochhaus, A., Reiter, A., Saussele, S., Reichert, A., Emig, M., Kaeda, J., et al. (2000) Molecular heterogeneity in complete cytogenetic responders after interferon-a therapy for chronic myelogenous leukemia: Low levels of minimal residual disease are associated with continuing remission. Blood 95, 62–66.PubMedGoogle Scholar
  82. 82.
    Reiter, A., Marley, S. B., Hochhaus, A., Sohal, J., Raanani, P., Hehlmann, R., et al. (1998) BCR-ABL positive progenitors in chronic myeloid leukaemia patients in complete cytogenetic remission after treatment with interferon-α. Br. J. Haematol. 102, 1271–1278.PubMedGoogle Scholar
  83. 83.
    Kurzrock, R., Estrov, Z., Kantarjian, H., and Talpaz, M. (1998) Conversion of interferon-induced, long-term cytogenetic remissions in chronic myelogenous leukemia to polymerase chain reaction negativity. J. Clin. Oncol. 16, 1526–1531.PubMedGoogle Scholar
  84. 84.
    Gaiger, A., Henn, T., Horth, E., Geissler, K., Mitterbauer, G., Maier Dobersberger, T., et al. (1995) Increase of bcr-abl chimeric mRNA expression in tumor cells of patients with chronic myeloid leukemia precedes disease progression. Blood 86, 2371–2378.PubMedGoogle Scholar
  85. 85.
    van Rhee, F., Hochhaus, A., Lin, F., Melo, J. V., Goldman, J. M., and Cross, N. C. P. (1996) p190 BCR-ABL mRNA is expressed at low levels in p210-positive chronic myeloid and acute lymphoblastic leukemias. Blood 87, 5213–5217.PubMedGoogle Scholar
  86. 86.
    Saglio, G., Pane, F., Gottardi, E., Frigeri, F., Buonaiuto, M. R., Guerrasio, A., de Micheli, D., et al. (1996) Consistent amounts of acute leukemia-associated P190BCR/ABL transcripts are expressed by chronic myelogenous leukemia patients at diagnosis. Blood 87, 1075–1080.PubMedGoogle Scholar
  87. 87.
    Mensink, E., van de Locht, A., Schattenberg, A., Linders, E., Schaap, N., Guerts van Kessel, A., and de Witte, T. (1998) Quantitation of minimal residual disease in Philadelphia chromosome positive chronic myeloid leukaemia patients using real-time quantitative RT-PCR. Br. J. Haematol. 102, 768–774.PubMedGoogle Scholar
  88. 88.
    Preudhomme, C., Révillion, F., Merlat, A., Hornez, L., Roumier, C., Duflos-Grardel, N., et al. (1999) Detection of BCR-ABL transcripts in chronic myeloid leukemia (CML) using a ′real time′ quantitative RT-PCR assay. Leukemia 13, 957–964.PubMedGoogle Scholar
  89. 89.
    Heid, C. A., Stevens, J., Livak, K. J., and Williams, P. M. (1996) Real time quantitative PCR. Genome Res. 6, 986–994.PubMedGoogle Scholar
  90. 90.
    Wittwer, C. T., Herrmann, M. G., Moss, A. A., and Rasmussen, R. P. (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22, 130–138.PubMedGoogle Scholar
  91. 91.
    Wittwer, C. T., Ririe, K. M., Andrew, R. V., David, D. A., Gundry, R. A., and Balis, U. J. (1997) The LightCycler™: a microvolume multisample fluorimeter with rapid temperature control. Biotechniques 22, 176–181.PubMedGoogle Scholar
  92. 92.
    Emig, M., Saussele, S., Wittor, H., Weisser, A., Reiter, A., Willer, A., et al. (1999) Accurate and rapid analysis of residual disaese in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia 13, 1825–1832.PubMedGoogle Scholar
  93. 93.
    Lawler, M., Humphries, P., and Mccann, S. R. (1991) Evaluation of mixed chimerism by in vitro amplification of dinucleotide repeat sequences using the polymerase chain reaction. Blood 77, 2504–2514.PubMedGoogle Scholar
  94. 94.
    Rapanotti, M. C., Arcese, W., Buffolino, S., Iori, A. P., Mengarelli, A., De Cuia, M. R., et al. (1997) Sequential molecular monitoring of chimerism in chronic myeloid leukemia patients receiving donor lymphocyte transfusion for relapse after bone marrow transplantation. Bone Marrow Transplant. 19, 703–707.PubMedGoogle Scholar
  95. 95.
    Gardiner, N., Lawler, M., O’Riordan, J. M., Duggan, C., De Arce, M., and Mccann, S. R. (1998) Monitoring of lineage-specific chimaerism allows early prediction of response following donor lymphocyte infusions for relapsed chronic myeloid leukaemia. Bone Marrow Transplant. 21, 711–719.PubMedGoogle Scholar
  96. 96.
    Shtivelman, E., Gale, R. P., Dreazen, O., Berrebi, A., Zaizov, R., Kubonishi, I., et al. (1987) bcr-abl RNA in patients with chronic myelogenous leukemia. Blood 69, 971–973.PubMedGoogle Scholar
  97. 97.
    Dhingra, K., Talpaz, M., Riggs, M. G., Eastman, P. S., Zipf, T., Ku, S., and Kurzrock, R. (1991) Hybridization protection assay: a rapid, sensitive, and specific method for detection of Philadelphia chromosome-positive leukemias. Blood 77, 238–242.PubMedGoogle Scholar
  98. 98.
    Westbrook, C. A., Rubin, C. M., Carrino, J. J., Le Beau, M. M., Bernards, A., and Rowley, J. D. (1988) Long-range mapping of the Philadelphia chromosome by pulsed-field gel electrophoresis. Blood 71, 697–702.PubMedGoogle Scholar
  99. 99.
    Jiang, X. Y., Trujillo, J. M., Dao, D., and Liang, J. C. (1989) Studies of BCR and ABL gene rearrangements in chronic myelogenous leukemia patients by conventional and pulsed-field gel electrophoresis using gel inserts. Cancer Genet. Cytogenet. 42, 287–294.PubMedGoogle Scholar
  100. 100.
    Min, G. L., Martiat, P., Pu, G. A., and Goldman, J. (1990) Use of pulsed field gel electrophoresis to characterize BCR gene involvement in CML patients lacking M-BCR rearrangement. Leukemia 4, 650–656.PubMedGoogle Scholar
  101. 101.
    Preudhomme, C., Chams-Eddine, L., Roumier, C., Duflos-Grardel, N., Denis, C., Cosson, A., and Fenaux, P. (1999) Detection of BCR-ABL transcripts in chronic myeloid leukemia (CML) using an in situ RT-PCR assay. Leukemia 13, 818–823.PubMedGoogle Scholar
  102. 102.
    Testoni, N., Martinelli, G., Farabegoli, P., Zaccaria, A., Amabile, M., Raspadori, D., et al. (1996) A new method of “in-cell reverse transcriptase-polymerase chain reaction” for the detection of BCR/ABL transcripts in chronic myeloid leukemia patients. Blood 87, 3822–3827.PubMedGoogle Scholar
  103. 103.
    Cross, N. C. P., Hughes, T. P., Feng, L., O’Shea, P., Bungey, J., Marks, D. I., et al. (1993) Minimal residual disease after allogeneic bone marrow transplantation for chronic myeloid leukaemia in first chronic phase: correlations with acute graft-versus-host disease and relapse. Br. J. Haematol. 84, 67–74.PubMedGoogle Scholar
  104. 104.
    Slade, M. J., Smith, B. M., Sinnett, H. D., Cross, N. C. P., and Coombes, R. C. (1999) Quantitative polymerase chain reaction for the detection of micrometastases in patients with breast cancer. J. Clin. Oncol. 17, 870–879.PubMedGoogle Scholar
  105. 105.
    Lion, T. (1994) Clinical implications of qualitative and quantitative polymerase chain reaction analysis in the monitoring of patients with chronic myelogenous leukemia. The European Investigators on Chronic Myeloid Leukemia Group. Bone Marrow Transplant. 14, 505–509.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Andreas Hochhaus
    • 1
  1. 1.III. Medizinische UniversitätsklinikKlinikum Mannheim der Universität HeidelbergMannheimGermany

Personalised recommendations