Skip to main content

Conformation as Therapeutic Target in the Prionoses and Other Neurodegenerative Conditions

  • Protocol
Book cover Molecular Pathology of the Prions

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 59))

Abstract

Neurodegenerative conditions are increasing in prevalence as the average human life expectancy rises. Alzheimer’s disease (AD) is the fourth commonest cause of death in the United States; the recent outbreak of new variant Creutzfeldt-Jakob disease (nvCJD) has raised the specter of a large population being at risk to develop this prionosis. The pathogenesis of many neurodegenerative diseases is now recognized to be associated with abnormalities of protein conformation. A common theme in these disorders is the conversion of a soluble normal precursor protein into an insoluble, aggregated, ?-sheet rich form that is toxic. In AD, a critical event is the conversion of the normal, soluble A? (sA?) peptide into fibrillar A?, within neuritic plaques and congophilic angiopathy (1). Similarly, in the prionoses, the central event is the conversion of the normal prion protein, PrPC, to PrPSc (2). An increased ?-sheet content characterizes both A? and PrPSc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wisniewski, T., Ghiso, J., and Frangione, B. (1997) Biology of A? amyloid in Alzheimer’s disease. Neurobiol. Dis. 4, 313–328.

    Article  PubMed  CAS  Google Scholar 

  2. Prusiner, S. B., Scott, M. R., DeArmond, S. J., and Cohen, F. E. (1998) Prion protein biology. Cell 93, 337–348.

    Article  PubMed  CAS  Google Scholar 

  3. Vidal, R., Frangione, B., Rostagno, A., Mead, S., Revesz, T., Plant, G., and Ghiso, J. (1999) A stop-codon mutation in the BRI gene associated with familial British dementia. Nature 399, 776–781.

    Article  PubMed  CAS  Google Scholar 

  4. Vidal, R. G., Garzuly, F., Budka, H., Lalowski, M., Linke, R. P., Brittig, F., Frangione, B., and Wisniewski, T. (1996) Meningocerebrovascular amyloidosis associated with a novel transthyretin (TTR) missence mutation at codon 18 (TTRD18G). Am. J. Pathol. 148, 361–366.

    PubMed  CAS  Google Scholar 

  5. Welch, W. J. and Gambetti, P. (1998) Chaperoning brain diseases. Nature 392, 23–24.

    Article  PubMed  CAS  Google Scholar 

  6. Wisniewski, T., Aucouturier, P., Soto, C., and Frangione, B. (1998) The prionoses and other conformational disorders. Amyloid 5, 212–224.

    Article  PubMed  CAS  Google Scholar 

  7. Demaimay, R., Harper, J., Gordon, H., Weaver, D., Chesebro, B., and Caughey, B. (1998) Structural aspects of Congo red as an inhibitor of protease-resistant prion protein formation. J. Neurochem. 71, 2534–2541.

    Article  PubMed  CAS  Google Scholar 

  8. Caspi, S., Halimi, M., Yanai, A., Sasson, S. B., Taraboulos, A., and Gabizon, R. (1998) The anti-prion activity of Congo red. Putative mechanism. J. Biol. Chem. 273, 3484–3489.

    Article  PubMed  CAS  Google Scholar 

  9. Tagliavini, F., McArthur, R. A., Canciani, B., Giaccone, G., Porro, M., Bugiani, M., et al. (1997) Effectiveness of anthracycline against experimental prion disease in Syrian hamsters. Science 276, 1119–1122.

    Article  PubMed  CAS  Google Scholar 

  10. Adjou, K. T., Demaimay, R., Deslys, J. P., Lasmezas, C. I., Beringue, V., Demart, S., et al. (1999) MS-8209, a water-soluble amphotericin B derivative, affects both scrapie agent replication and PrPres accumulation in Syrian hamster scrapie. J. Gen. Virol. 80, 1079–1085.

    PubMed  CAS  Google Scholar 

  11. Adjou, K. T., Demaimay, R., Lasmezas, C. I., Seman, M., Deslys, J. P., and Dormont, D. (1996) Differential effects of a new amphotericin B derivative, MS-8209, on mouse BSE and scrapie, implications for the mechanism of action of polyene antibiotics. Res.Virol. 147, 213–218.

    Article  PubMed  CAS  Google Scholar 

  12. Farquhar, C., Dickinson, A., and Bruce, M. (1999) Prophylactic potential of pentosan polysulphate in transmissible spongiform encephalopathies. Lancet 353, 117.

    Article  PubMed  CAS  Google Scholar 

  13. Soto, C., Kascsak, R. J., Saborio, G. P., Aucouturier, P., Wisniewski, T., Prelli, F., et al. (2000) Reversion of prion protein conformational changes by synthetic ?-sheet breaker peptides. Lancet 355, 192–197.

    Article  PubMed  CAS  Google Scholar 

  14. Wood, S. J., Wetzel, R., Martin, J. D., and Hurle, M. R. (1995) Prolines and amyloidogenicity in fragments of the Alzheimer’s peptide ?/A4. Biochemistry 34, 724–730.

    Article  PubMed  CAS  Google Scholar 

  15. Soto, C., Kindy, M. S., Baumann, M., and Frangione, B. (1996) Inhibition of Alzheimer’s amyloidosis by peptides that prevent ?-sheet conformation. Biochem. Biophys. Res. Commun. 226, 672–680.

    Article  PubMed  CAS  Google Scholar 

  16. Soto, C., Sigurdsson, E. M., Morelli, L., Kumar, A., Castaño, E. M., and Frangione, B. (1998) ?-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis, Implications for Alzheimer’s therapy. Nature Med. 4, 822–826.

    Article  PubMed  CAS  Google Scholar 

  17. De Gioia, L., Selvaggini, C., Ghibaudi, E., Diomede, L., Bugiani, O., Forloni, G., Tagliavini, F., and Salmona, M. (1994) Conformational polymorphism of the amyloidogenic and neurotoxic peptide homologous to residues 106-126 of the prion protein. J. Biol. Chem. 269, 7859–7862.

    PubMed  CAS  Google Scholar 

  18. Zhang, H., Kaneko, K., Nguyen, J. T., Livshits, T. L., Baldwin, M. A., Cohen, F. E., James, T. L., and Prusiner, S. B. (1995) Conformational transitions in peptides containing two putative alpha-helices of the prion protein. J. Mol. Biol. 250, 514–526.

    Article  PubMed  CAS  Google Scholar 

  19. Chabry, J., Caughey, B., and Chesebro, B. (1998) Specific inhibition of in vitro formation of protease-resistant prion protein by synthetic peptides. J. Biol. Chem. 273, 13,203–13,207.

    Article  PubMed  CAS  Google Scholar 

  20. Nguyen, J., Baldwin, M. A., Cohen, F. E., and Prusiner, S. B. (1995) Prion protein peptides induce alpha-helix to beta-sheet conformational transitions. Biochemistry 34, 4186–4192.

    Article  PubMed  CAS  Google Scholar 

  21. Naiki, H., Higuchi, K., Nakakuki, K., and Takeda, T. (1991) Kinetic analysis of amyloid fibril polymerization in vitro. Lab. Inv. 65, 104–110.

    CAS  Google Scholar 

  22. Wisniewski, T., Castaño, E. M., Golabek, A. A., Vogel, T., and Frangione, B. (1994) Acceleration of Alzheimer’s fibril formation by apolipoprotein E in vitro. Am. J. Pathol. 145, 1030–1035.

    PubMed  CAS  Google Scholar 

  23. Priola, S. A., Raines, A., and Caughey, W. S. (2000) Porphyrin and phthalocyanine antiscrapie compounds. Science 287, 1503–1506.

    Article  PubMed  CAS  Google Scholar 

  24. Sigurdsson, E. M., Permanne, B., Soto, C., Wisniewski, T., and Frangione, B. (2000) In vivo reversal of amyloid ? lesions in rat brain. J. Neuropath. Exp. Neurol. 59, 11–17.

    PubMed  CAS  Google Scholar 

  25. Pappolla, M. A., Sos, M., Omar, R. A., Bick, R. J., Hickson-Bick, D. L. M., Reiter, R. J., Efthimiopoulos, S., and Robakis, N. K. (1997) Melatonin prevents death of neuroblastoma cells exposed to the Alzheimer amyloid peptide. J. Neurosci. 17, 1683–1690.

    PubMed  CAS  Google Scholar 

  26. Pappolla, M., Bozner, P., Soto, C., Shao, H., Robakis, N. K., Zagorski, M., Frangione, B., and Ghiso, J. (1998) Inhibition of Alzheimer beta-fibrillogenesis by melatonin. J. Biol. Chem. 273, 7185–7188.

    Article  PubMed  CAS  Google Scholar 

  27. Salomon, A. R., Marcinowski, K. J., Friedland, R. P., and Zagorski, M. G. (1996) Nicotine inhibits amyloid formation by the beta-peptide. Biochem. 35, 13,568–13,578.

    Article  CAS  Google Scholar 

  28. Matsubara, E., Soto, C., Governale, S., Frangione, B., and Ghiso, J. (1996) Apolipoprotein J and Alzheimer’s amyloid ? solubility. Biochem. J. 316, 671–679.

    PubMed  CAS  Google Scholar 

  29. Merlini, G., Ascari, E., Amboldi, N., Bellotti, V., Arbustini, E., Perfetti, V., et al. (1995) Interaction of the anthracycline 4’-iodo-4’-deoxydoxorubicin with amyloid fibrils, inhibition of amyloidogenesis. Proc. Natl. Acad. Sci. USA 92, 2959–2963.

    Article  PubMed  CAS  Google Scholar 

  30. Tomiyama, T., Shoji, A., Kataoka, K., Suwa, Y., Asano, S., Kaneko, H., and Endo, N. (1996) Inhibition of amyloid ? protein aggregation and neurotoxicity by rifampicin: its possible function as a hydroxyl radical scavenger. J. Biol. Chem. 271, 6839–6844.

    Article  PubMed  CAS  Google Scholar 

  31. Tomiyama, T., Kaneko, H., Kataoka, K., Asano, S., and Endo, N.(1997) Rifampicin inhibits the toxicity of pre-aggregated amyloid peptides by binding to peptide fibrils and preventing amyloid-cell interaction. Biochem. J. 322, 859–865.

    PubMed  CAS  Google Scholar 

  32. Wood, S. J., MacKenzie, L., Maleeff, B., Hurle, M. R., and Wetzel, R. (1996) Selective inhibition of Abeta fibril formation. J. Biol. Chem. 271, 4086–4092.

    Article  PubMed  CAS  Google Scholar 

  33. Kisilevsky, R., Lemieux, L. J., Fraser, P. E., Kong, X., Hultin, P. G., and Szarek, W. A. (1995) Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates, implications for Alzheimer’s disease. Nature Med. 1, 143–148.

    Article  PubMed  CAS  Google Scholar 

  34. Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., et al. (1999) Immunization with amyloid-? attenuates Alzheimer disease-like pathology in the PDAPP mice. Nature 400, 173–177.

    Article  PubMed  CAS  Google Scholar 

  35. Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., et al. (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F ?-amyloid precursor protein. Nature 373, 523–527.

    Article  PubMed  CAS  Google Scholar 

  36. Solomon, B., Koppel, R., Hanan, E., and Katzav, T. (1996) Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer ?-amyloid peptide. Proc. Natl. Acad. Sci. USA 93, 452–455.

    Article  PubMed  CAS  Google Scholar 

  37. Solomon, B., Koppel, R., Frankel, D., Hanan-Aharon, E. (1997) Disaggregation of Alzheimer ?-amyloid by site-directed mAb. Proc. Natl. Acad. Sci. USA 94, 4109–4112.

    Article  PubMed  CAS  Google Scholar 

  38. During, M. J., Symes, C. W., Lawlor, P. A., Lin, J., Dunning, J., Fitzsimons, H. L., et al. (2000) An oral vaccine against NMDAR1 with efficacy in experimental stroke and epilepsy. Science 287, 1453–1460.

    Article  PubMed  CAS  Google Scholar 

  39. Nicoll, J. A., Mrak, R. E., Graham, D. I., Stewart, J., Wilcock, G., MacGowan, S., et al. (2000) Association of interleukin-1 gene polymorphism with Alzheimer’s disease. Ann. Neurol. 47, 365–368.

    Article  PubMed  CAS  Google Scholar 

  40. Grimaldi, L. M. E., Casadei, V. M., Ferri, C., Veglia, F., Licastro, F., Annoni, G., et al. (2000) Association of early-onset Alzheimer’s disease with an interleukin-1? gene polymorphism. Ann. Neurol. 47, 361–365.

    Article  PubMed  CAS  Google Scholar 

  41. Neuroinflammation Working Group (2000) Inflammation and Alzheimer’s disease. Neurobiol. Aging 21, 383–421.

    Article  Google Scholar 

  42. Luber-Narod, J. and Rogers, J. (1988) Immune system associated antigens expressed by cells of the human nervous system. Neurosci. Lett. 94, 17–22.

    Article  PubMed  CAS  Google Scholar 

  43. Griffin, W. S. T., Sheng, J. G., Roberts, G. W., and Mrak, R. E. (1995) Interleukin-1 expression in different plaque types in Alzheimer’s disease, significance in plaque evolution. J. Neuropath. Exp. Neurol. 54, 276–281.

    Article  PubMed  CAS  Google Scholar 

  44. Rogers, J. and Griffin, W. S. T. (1997) Inflammatory mechanisms of Alzheimer’s disease, in Neuroinflammation, Mechanisms and Management. (Wood, P. L., ed.), Humana, Totowa, NJ, pp. 177–193.

    Chapter  Google Scholar 

  45. McGeer, P. L., McGeer, E. G., Rogers, J., and Sibley, J. (1990) Anti-inflammatory drugs and Alzheimer’s disease. Lancet 335, 1037.

    Article  PubMed  CAS  Google Scholar 

  46. Rogers, J., Kirby, L. C., Hempelman, S. R., Berry, D. L., McGeer, P. L., Kaszniak, A. W., et al. (1993) Clinical trial of indomethacin in Alzheimer’s disease. Neurology 43, 1609–1611.

    PubMed  CAS  Google Scholar 

  47. McGeer, P. L. and McGeer, E. G. (1996) Anti-inflammatory drugs in the fight against Alzheimer’s disease. Ann. NY Acad. Sci. 777, 213–220.

    Article  PubMed  CAS  Google Scholar 

  48. Porter, D. D., Porter, H. G., and Cox, N. A. (1973) Failure to demonstrate a humoral immune response to scrapie infection in mice. J. Immunol. 111, 1407–1410.

    PubMed  CAS  Google Scholar 

  49. Kingsbury, D. T., Smeltzer, D. A., Gibbs, C. J., Jr., and Gajdusek, D. C. (1981) Evidence for normal cell-mediated immunity in scrapie-infected mice. Infect. Immun. 32, 1176–1180.

    PubMed  CAS  Google Scholar 

  50. Bendheim, P. E., Brown, H. R., Rudelli, R. D., Scala, L. J., Goller, N. L., Wen, G. Y., et al. (1992) Nearly ubiquitous tissue distribution of the scrapie agent precursor protein. Neurology 42, 149–156.

    PubMed  CAS  Google Scholar 

  51. Fraser, H., Brown, K. L., Stewart, K., McConnell, I., McBride, P., and Williams, A. (1996) Replication of scrapie in spleens of SCID mice follows reconstitution with wild-type mouse bone marrow. J. Gen. Virol. 77, 1935–1940.

    Article  PubMed  CAS  Google Scholar 

  52. Lasmezas, C. I., Cesbron, J. Y., Deslys, J. P., Demaimay, R., Adjou, K. T., Rioux, R., et al. (1996) Immune system-dependent and-independent replication of the scrapie agent. J. Virol. 70, 1292–1295.

    PubMed  CAS  Google Scholar 

  53. Kuroda, Y., Gibbs, C. J. J., Amyx, H. L., and Gajdusek, D. C. (1983) Creutzfeldt-Jakob disease in mice, persistent viremia and preferential replication of virus in low-density lymphocytes. Infect. Immun. 41, 154–161.

    PubMed  CAS  Google Scholar 

  54. Fraser, H. and Farquhar, C. F. (1987) Ionising radiation has no influence on scrapie incubation period in mice. Vet. Microbiol. 13, 211–223.

    Article  PubMed  CAS  Google Scholar 

  55. Kitamoto, T., Muramoto, T., Mohri, S., Doh-ura, K., and Tateishi, J. (1991) Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt-Jakob disease. J. Virol. 65, 6292–6295.

    PubMed  CAS  Google Scholar 

  56. Klein, M. A., Frigg, R., Flechsig, E., Raeber, A. J., Kalinke, U., Bluethmann, H., et al. (1997) A crucial role for B cells in neuroinvasive scrapie. Nature 390, 687–690.

    PubMed  CAS  Google Scholar 

  57. Brown, K. L., Stewart, K., Ritchie, D. L., Mabbott, N. A., Williams, A., Fraser, H., Morrison, W. I., and Bruce, M. E. (1999) Scrapie replication in lymphoid tissues depends on prion protein-expressing follicular dendritic cells. Nature Med. 5, 1308–1312.

    Article  PubMed  CAS  Google Scholar 

  58. Dickinson, A. G., Fraser, H., McConnell, I., and Outram, G. W. (1978) Mitogenic stimulation of the host enhances susceptibility to scrapie. Nature 272, 54–55.

    Article  PubMed  CAS  Google Scholar 

  59. Outram, G. W., Dickinson, A. G., and Fraser, H. (1974) Reduced susceptibility to scrapie in mice after steroid administration. Nature 249, 855–856.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Wisniewski, T., Sigurdsson, E.M., Aucouturier, P., Frangione, B. (2001). Conformation as Therapeutic Target in the Prionoses and Other Neurodegenerative Conditions. In: Baker, H.F. (eds) Molecular Pathology of the Prions. Methods in Molecular Medicine™, vol 59. Humana Press. https://doi.org/10.1385/1-59259-134-5:223

Download citation

  • DOI: https://doi.org/10.1385/1-59259-134-5:223

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-924-7

  • Online ISBN: 978-1-59259-134-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics