Prions of Yeast From Cytoplasmic Genes to Heritable Amyloidosis

  • Reed B. Wickner
  • Herman K. Edskes
  • Kimberly L. Taylor
  • Marie-Lise Maddelein
  • Hiromitsu Moriyama
  • B. Tibor Roberts
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 59)

Abstract

It was believed that only proteins could carry out enzymatic reactions, and only nucleic acids could mediate inheritance. In recent years, the work of Cech and Altman and others has shown that nucleic acids can catalyze reactions. Now it has been shown that, in yeast, proteins can mediate inheritance. The infectious protein (prion) concept arose from studies of the transmissible spongiform encephalopathies (TSEs) of mammals (1), and several lines of evidence suggest that TSEs are indeed caused by infectious forms of the PrP protein, but the absence of definitive proof has left substantial doubt and disagreement on this point (2, 3, 4, 5, 6). The ease of genetic manipulation of yeast offers experimental possibilities not yet available even in the mouse system. This enabled the discovery of yeast prions (7), and has facilitated the rapid characterization of these systems. The parallels between the yeast and mammalian systems are striking. Moreover, because both of the yeast prion systems appear to involve self-propagating amyloid forms of the respective proteins, these systems may also serve as models for the broader class of diseases for which amyloid accumulation is a central feature. The discovery of the [HET-s] prion of the filamentous fungus Podospora, another genetically manipulable system, adds a new dimension to prion studies (8).

Keywords

Codon Adenosine Assimilation Glutamine Candida 

References

  1. 1.
    Griffith, J. S. (1967) Self-replication and scrapie. Nature 215, 1043–1044PubMedCrossRefGoogle Scholar
  2. 2.
    Chesebro, B. (1998) BSE and prions: uncertainties about the agent. Science 279, 42–43PubMedCrossRefGoogle Scholar
  3. 3.
    Farquhar, C. F., Somerville, R. A., and Bruce, M. E. (1998) Straining the prion hypothesis. Nature 391, 345–346PubMedCrossRefGoogle Scholar
  4. 4.
    Prusiner, S. B. (1998) Prions. Proc. Natl. Acad. Sci. USA. 95, 13,363–13,383CrossRefGoogle Scholar
  5. 5.
    Manson, J. C., Jamieson, E., Baybutt, H., Tuzi, N. L., Barron, R., McConnell, I., et al. (1999) Single amino acid alteration (101L) introduced into murine PrP dramatically alters incubation time of transmissible spongiform encephalopathy. EMBO J. 18, 6855–6864PubMedCrossRefGoogle Scholar
  6. 6.
    Weissmann, C. (1999) Molecular genetics of transmissible spongiform encephalopathies. J. Biol. Chem. 274, 3–6PubMedCrossRefGoogle Scholar
  7. 7.
    Wickner, R. B. (1994) Evidence for a prion analog in S. cerevisiae: the (URE3) nonMendelian genetic element as an altered URE2 protein. Science 264, 566–569PubMedCrossRefGoogle Scholar
  8. 8.
    Coustou, V., Deleu, C., Saupe, S., and Begueret, J. (1997) Protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc. Natl. Acad. Sci. USA 94, 9773–9778PubMedCrossRefGoogle Scholar
  9. 9.
    Wickner, R. B., Masison, D. C., and Edskes, H. K. (1995) [PSI] and [URE3] as yeast prions. Yeast 11, 1671–1685PubMedCrossRefGoogle Scholar
  10. 10.
    Lindquist, S. (1997) Mad cows meet psi-chotic yeast: the expansion of the prion hypothesis. Cell 89, 495–498PubMedCrossRefGoogle Scholar
  11. 11.
    Kushnirov, V. V. and Ter-Avanesyan, M. D. (1998) Structure and replication of yeast prions. Cell 94, 13–16PubMedCrossRefGoogle Scholar
  12. 12.
    Liebman, S. W. and Derkatch, I. L. (1999) The yeast [PSI+] prion: making sense out of nonsense. J. Biol. Chem. 274, 1181–1184PubMedCrossRefGoogle Scholar
  13. 13.
    Wickner, R. B. and Chernoff, Y. (1999) Prions of yeast and fungi: [URE3], [PSI] and [Het-s] discovered as heritable traits, in Prions (Prusiner, S. B. ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 229–272Google Scholar
  14. 14.
    Westaway, D., DeArmond, S. J., Cayetano-Canlas, J., Groth, D., Foster, D., Yang, S.-L., et al. (1994) Degeneration of skeletal muscle, peripheral nerves, and the central nervous system in transgenic mice overexpressing wild-type prion proteins. Cell 76, 117–129PubMedCrossRefGoogle Scholar
  15. 15.
    Bueler, H., Aguzzi, A., Sailer, A., Greiner, R.-A., Autenried, P., Aguet, M., et al. (1993) Mice devoid of PrP are resistant to Scrapie. Cell 73, 1339–1347PubMedCrossRefGoogle Scholar
  16. 16.
    Bueler, H., Fischer, M., Lang, Y., Bluethmann, H., Lipp, H. P., DeArmond, S. J., et al. 1992. Normal development and behavior of mice lacking the neuronal cellsurface PrP protein. Nature 356, 577–582PubMedCrossRefGoogle Scholar
  17. 17.
    Cooper, T. G. (1982) Nitrogen metabolism in Saccharomyces cerevisiae, in The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression, vol. 2 (Strathern, J. N., Jones, E. W., and Broach, J. R. eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 39–99Google Scholar
  18. 18.
    Magasanik, B. (1992) Regulation of nitrogen utilization, in The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression, vol. 2 (Strathern, J. N., Jones, E. W., and Broach, J. R. eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 283–317Google Scholar
  19. 19.
    Chisholm, V. T., Lea, H. Z., Rai, R., and Cooper, T. G. (1987) Regulation of allantoate transport in wild-type and mutant strains of Saccharomyces cerevisiae. J. Bacteriol. 169, 1684–1690PubMedGoogle Scholar
  20. 20.
    Rai, R., Genbauffe, F., Lea, H. Z., and Cooper, T. G. (1987) Transcriptional regulation of the DAL5 gene in Saccharomyces cerevisiae. J. Bacteriol. 169, 3521–3524PubMedGoogle Scholar
  21. 21.
    Schoun, J. and Lacroute, F. (1969) Etude physiologique d’une mutation permettant l’incoporation d’acide ureidosuccinique chez la levure. C. R. Acad. Sci. 269, 1412–1414Google Scholar
  22. 22.
    Lacroute, F. (1971) Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J. Bacteriol. 106, 519–522PubMedGoogle Scholar
  23. 23.
    Drillien, R. and Lacroute, F. (1972) Ureidosuccinic acid uptake in yeast and some aspects of its regulation. J. Bacteriol. 109, 203–208PubMedGoogle Scholar
  24. 24.
    Drillien, R., Aigle, M., and Lacroute, F. (1973) Yeast mutants pleiotropically impaired in the regulation of the two glutamate dehydrogenases. Biochem. Biophys. Res. Commun. 53, 367–372PubMedCrossRefGoogle Scholar
  25. 25.
    Aigle, M. and Lacroute, F. (1975) Genetical aspects of [URE3], a non-Mendelian, cytoplasmically inherited mutation in yeast. Mol. Gen. Genet. 136, 327–335PubMedCrossRefGoogle Scholar
  26. 26.
    Mitchell, A. P. and Magasanik, B. (1984) Regulation of glutamine-repressible gene products by the GLN3 function in Saccharomyces cerevisiae. Mol. Cell. Biol. 4, 2758–2766PubMedGoogle Scholar
  27. 27.
    Courchesne, W. E. and Magasanik, B. (1988) Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J. Bacteriol. 170, 708–713PubMedGoogle Scholar
  28. 28.
    Coschigano, P. W. and Magasanik, B. (1991) The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione S-transferases. Mol. Cell. Biol. 11, 822–832PubMedGoogle Scholar
  29. 29.
    Edskes, H. K., Hanover, J. A., and Wickner, R. B. (1999) Mks1p is a regulator of nitrogen catabolism upstream of Ure2p in Saccharomyces cerevisiae. Genetics 153, 585–594PubMedGoogle Scholar
  30. 30.
    Beck, T. and Hall, M. N. (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402, 689–692PubMedCrossRefGoogle Scholar
  31. 31.
    Cardenas, M. E., Cutler, N. S., Lorenz, M. C., Di Como, C. J., and Heitman, J. (1999) The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev. 13, 3271–3279PubMedCrossRefGoogle Scholar
  32. 32.
    Hardwick, J. S., Kuruvilla, F. G., Tong, J. K., Shamji, A. F., and Schreiber, S. L. (1999) Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the tor proteins. Proc. Natl. Acad. Sci. USA 96, 14,866–14,870PubMedCrossRefGoogle Scholar
  33. 33.
    Cox, B. S. (1965) PSI, a cytoplasmic suppressor of super-suppressor in yeast. Heredity 20, 505–521CrossRefGoogle Scholar
  34. 34.
    Young, C. S. H. and Cox, B. S. (1971) Extrachromosomal elements in a supersuppression system of yeast. 1. A nuclear gene controlling the inheritance of the extrachromosomal elements. Heredity 26, 413–422CrossRefGoogle Scholar
  35. 35.
    Young, C. S. H. and Cox, B. S. (1972) Extrachromosomal elements in a supersuppression system of yeast. II. Relations with other extrachromosomal elements. Heredity 28, 189–199PubMedCrossRefGoogle Scholar
  36. 36.
    Leibowitz, M. J. and Wickner, R. B. (1978) Pet18: a chromosomal gene required for cell growth and for the maintenance of mitochondrial DNA and the killer plasmid of yeast. Mol. Gen. Genet. 165, 115–121PubMedCrossRefGoogle Scholar
  37. 37.
    Cox, B. S., Tuite, M. F., and McLaughlin, C. S. (1988) The Psi factor of yeast: a problem in inheritance. Yeast 4, 159–179PubMedCrossRefGoogle Scholar
  38. 38.
    Hawthorne, D. C. and Mortimer, R. K. (1968) Genetic mapping of nonsense suppressors in yeast. Genetics 60, 735–742PubMedGoogle Scholar
  39. 39.
    Inge-Vechtomov, S. G. and Andrianova, V. M. (1970) Recessive super-suppressors in yeast. Genetika (Russ.) 6, 103–115Google Scholar
  40. 40.
    Stansfield, I., Jones, K. M., Kushnirov, V. V., Dagkesamanskaya, A. R., Poznyakovski, A. I., Paushkin, S. V., et al. (1995) The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J. 14, 4365–4373PubMedGoogle Scholar
  41. 41.
    Zhouravleva, G., Frolova, L., LeGoff, X., LeGuellec, R., Inge-Vectomov, S., Kisselev, L., et al. (1995) Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 14, 4065–4072PubMedGoogle Scholar
  42. 42.
    Singh, A. C., Helms, C., and Sherman, F. (1979) Mutation of the non-Mendelian suppressor [PSI] in yeast by hypertonic media. Proc. Natl. Acad. Sci. USA 76, 1952–1956PubMedCrossRefGoogle Scholar
  43. 43.
    Lund, P. M. and Cox, B. S. (1981) Reversion analysis of [psi-] mutations in Saccharomyces cerevisiae. Genet. Res. 37, 173–182PubMedCrossRefGoogle Scholar
  44. 44.
    Chernoff, Y. O., Derkach, I. L., and Inge-Vechtomov, S. G. (1993) Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr. Genet. 24, 268–270PubMedCrossRefGoogle Scholar
  45. 45.
    Doel, S. M., McCready, S. J., Nierras, C. R., and Cox, B. S. (1994) The dominant PNM2–mutation which eliminates the [PSI] factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 137, 659–670PubMedGoogle Scholar
  46. 46.
    TerAvanesyan, A., Dagkesamanskaya, A. R., Kushnirov, V. V., and Smirnov, V. N. (1994) The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137, 671–676Google Scholar
  47. 47.
    Masison, D. C. and Wickner, R. B. (1995) Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science 270, 93–95PubMedCrossRefGoogle Scholar
  48. 48.
    Masison, D. C., Maddelein, M.-L., and Wickner, R. B. (1997) The prion model for [URE3] of yeast: spontaneous generation and requirements for propagation. Proc. Natl. Acad. Sci. USA 94, 12,503–12,508PubMedCrossRefGoogle Scholar
  49. 49.
    Maddelein, M.-L. and Wickner, R. B. (1999) Two prion-inducing regions of Ure2p are non-overlapping. Mol. Cell. Biol. 19, 4516–4524PubMedGoogle Scholar
  50. 50.
    TerAvanesyan, M. D., Kushnirov, V. V., Dagkesamanskaya, A. R., Didichenko, S. A., Chernoff, Y. O., Inge-Vechtomov, S. G., et al. (1993) Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol. Microbiol. 7, 683–692CrossRefGoogle Scholar
  51. 51.
    Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G., and Liebman, S. W. (1996) Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144, 1375–1386PubMedGoogle Scholar
  52. 52.
    Kikuchi, Y., Shimatake, H., and Kikuchi, A. (1988) A yeast gene required for the G1 to S transition encodes a protein containing an A kinase target site and GTPase domain. EMBO J. 7, 1175–1182PubMedGoogle Scholar
  53. 53.
    Kushnirov, V. V., TerAvanesyan, M. D., Telckov, M. V., Surguchov, A. P., Smirnov, V. N., and Inge-Vechtomov, S. G. (1988) Nucleotide sequence of the SUP2(SUP35) gene of Saccharomyces cerevisiae. Gene 66, 45–54PubMedCrossRefGoogle Scholar
  54. 54.
    Wilson, P. G. and Culbertson, M. R. (1988) SUF12 suppressor protein of yeast: a fusion protein related to the EF-1 family of elongation factors. J. Mol. Biol. 199, 559–573PubMedCrossRefGoogle Scholar
  55. 55.
    Kochneva-Pervukhova, N. V., Poznyakovski, A. I., Smirnov, V. N., and Ter-Avanesyan, M. D. (1998) C-terminal truncation of the Sup35 protein increases the frequency of de novo gneration of a prion-based [PSI+] determinant in Saccharmyces cerevisiae. Curr. Genet. 34, 146–151PubMedCrossRefGoogle Scholar
  56. 56.
    DePace, A. H., Santoso, A., Hillner, P., and Weissman, J. S. (1998) A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93, 1241–1252PubMedCrossRefGoogle Scholar
  57. 57.
    Liu, J. J. and Lindquist, S. (1999) Oligopeptide-repeat expansions modulate protein-only’ inheritance in yeast. Nature 400, 573–576PubMedCrossRefGoogle Scholar
  58. 58.
    Owen, F., Poulter, M., Lofthouse, R., Collinge, J., Crow, T. J., Risby, D. et al. (1989) Insertion in prion protein gene in familial Creutzfeldt-Jakob disease. Lancet 1, 51–52PubMedCrossRefGoogle Scholar
  59. 59.
    Fischer, M., Rulicke, T., Raeber, A., Sailer, A., Moser, M., Oesch, B., et al. (1996) Prion protein (PrP) with amino-terminal deletions restoring susceptibility of PrPknockout mice to scrapie. EMBO J. 15, 1255–1264PubMedGoogle Scholar
  60. 60.
    Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N., and Ter-Avanesyan, M. D. (1996) Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J. 15, 3127–3134PubMedGoogle Scholar
  61. 61.
    Patino, M. M., Liu, J.-J., Glover, J. R., and Lindquist, S. (1996) Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273, 622–626PubMedCrossRefGoogle Scholar
  62. 62.
    Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N., and Ter-Avanesyan, M. D. (1997) In vitro propagation of the prion-like state of yeast Sup35 protein. Science 277, 381–383PubMedCrossRefGoogle Scholar
  63. 63.
    King, C.-Y., Tittmann, P., Gross, H., Gebert, R., Aebi, M., and Wuthrich, K. (1997) Prion-inducing domain 2-114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proc. Natl. Acad. Sci. USA 94, 6618–6622PubMedCrossRefGoogle Scholar
  64. 64.
    Glover, J. R., Kowal, A. S., Shirmer, E. C., Patino, M. M., Liu, J.-J., and Lindquist, S. (1997) Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89, 811–819PubMedCrossRefGoogle Scholar
  65. 65.
    Edskes, H. K., Gray, V. T., and Wickner, R. B. (1999) The [URE3] prion is an aggregated form of Ure2p that can be cured by overexpression of Ure2p fragments. Proc. Natl. Acad. Sci. USA 96, 1498–1503PubMedCrossRefGoogle Scholar
  66. 66.
    Taylor, K. L., Cheng, N., Williams, R. W., Steven, A. C., and Wickner, R. B. (1999) Prion domain initiation of amyloid formation in vitro from native Ure2p. Science 283, 1339–1343PubMedCrossRefGoogle Scholar
  67. 67.
    Chernoff, Y. O. and Ono, B.-I. (1992) Dosage-dependent modifiers of PSI-dependent omnipotent suppression in yeast, in Protein Synthesis and Targeting in Yeast, (Brown, A. J. P., Tuite, M. F., and McCarthy J. E. G., eds.), Springer-Verlag, Berlin. pp. 101–107Google Scholar
  68. 68.
    Chernoff, Y. O., Lindquist, S. L., Ono, B.-I., Inge-Vechtomov, S. G., and Liebman, S. W. (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268, 880–884PubMedCrossRefGoogle Scholar
  69. 69.
    Parsell, D. A., Kowal, A. S., Singer, M. A., and Lindquist, S. (1994) Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372, 475–478PubMedCrossRefGoogle Scholar
  70. 70.
    Sanchez, V. and Lindquist, S. L. (1990) HSP104 required for induced thermotolerance. Science 248, 1112–1115PubMedCrossRefGoogle Scholar
  71. 71.
    James, P., Pfund, C., and Craig, E. A. (1997) Functional specificity among Hsp70 molecular chaperones. Science 275, 387–389PubMedCrossRefGoogle Scholar
  72. 72.
    Ziegelhoffer, T., Johnson, J. L., and Craig, E. A. (1996) Chaperones get Hip. protein folding. Curr Biol. 6, 272–275PubMedCrossRefGoogle Scholar
  73. 73.
    Newnam, G. P., Wegrzyn, R. D., Lindquist, S. L., and Chernoff, Y. O. (1999) Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol. Cell. Biol. 19, 1325–1333PubMedGoogle Scholar
  74. 74.
    Pfund, C., Lopez-Hoyo, N., Ziegelhoffer, T., Schilke, B. A., Lopez-Buesa, P., Walter, W. A., et al. (1998) The molecular chaperone Ssb from Saccharomyces cerevisiae is a component of the ribosome-nascent chain complex. EMBO J. 17, 3981–3989PubMedCrossRefGoogle Scholar
  75. 75.
    Chernoff, Y. O., Newnam, G. P., Kumar, J., Allen, K., and Zink, A. D. (1999) Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone Ssb in formation, stability and toxicity of the [PSI+] prion. Mol. Cell. Biol. 19, 8103–8112PubMedGoogle Scholar
  76. 76.
    Matsuura, A. and Anraku, Y. (1993) Characterization of the MKS1 gene, a new negative regulator of the ras-cyclic AMP pathway in Saccharomyces cerevisiae. Mol. Gen. Genet. 238, 6–16PubMedGoogle Scholar
  77. 77.
    Feller, A., Ramos, F., Peirard, A., and Dubois, E. (1997) Lys80p of Saccharomyces cerevisiae, previously proposed as a specific repressor of LYS genes, is a pleiotropic regulatory factor identical to Mks1p. Yeast 13, 1337–1346PubMedCrossRefGoogle Scholar
  78. 78.
    Derkatch, I. L., Bradley, M. E., and Liebman, S. W. (1998) Overexpression of the SUP45 gene encoding a Sup35p-binding protein inhibits the induction of the de novo appearance of the [PSI+] prion. Proc Natl Acad Sci USA 95, 2400–2405PubMedCrossRefGoogle Scholar
  79. 79.
    Derkatch, I. L., Bradley, M. E., Zhou, P., Chernoff, Y. O., and Liebman, S. W. (1997) Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147, 507–519.PubMedGoogle Scholar
  80. 80.
    Begueret, J., Turq, B., and Clave, C. (1994) Vegetative incompatibility in filamentous fungi: het genes begin to talk. Trends Genet. 10, 441–446.PubMedCrossRefGoogle Scholar
  81. 81.
    Rizet, G. (1952) Les phenomenes de barrage chez Podospora anserina: analyse genetique des barrages entre les souches s et S. Rev. Cytol. Biol. Veg. 13, 51–92.Google Scholar
  82. 82.
    Beisson-Schecroun, J. (1962) Incompatibilte cellulaire et interactions nucleocytoplasmiques dans les phenomenes de barrage chez Podospora anserina. Ann. Genet. 4, 3–50.Google Scholar
  83. 83.
    Coustou, V., Deleu, C., Saupe, S. J., and Begueret, J. (1999) Mutational analysis of the [Het-s] prion analog of Podospora anserina: a short N-terminal peptide allows prion propagation. Genetics 153, 1629–1640.PubMedGoogle Scholar
  84. 84.
    Tuite, M. F., Mundy, C. R., and Cox, B. S. (1981) Agents that cause a high frequency of genetic change from [psi+] to [psi-] in Saccharomyces cerevisiae. Genetics 98, 691–711.PubMedGoogle Scholar
  85. 85.
    Eaglestone, S. S., Ruddock, L. W., Cox, B. S., and Tuite, M. F. (2000) Guanidine hydrochloride blocks a critical step in the propagation of the prion-like determinant [PSI+] of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 97, 240–244.PubMedCrossRefGoogle Scholar
  86. 86.
    Bousset, L., Beirhali, H., Janin, J., Melki, R., and Morera, S. (2001) Structure of the globular region of the prion protein Ure2 from the yeast Saccharomyces cerevisiae Structure 9, 39–46.Google Scholar
  87. 87.
    Chernoff, Y. O., Galkin, A. P., Lewitin, E., Chernova, T. A., Newnam, G. P., and Belenkly, S. M. (2000). Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Molec. Microbiol. 35, 865–876.CrossRefGoogle Scholar
  88. 88.
    Choi, J. H., Lou, W., and Vancura, A. (1998) A novel membrane-bound glutathione S-transferase functions in the stationary phase of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 273, 29,915–19,922.PubMedCrossRefGoogle Scholar
  89. 89.
    Jung, G., Jones, G., Wegrzyn, R. D., and Masison, D. C. (2000) A role for cytosolic Hsp70 in yeast [PSI+] prion propagation and [PSI+] as a cellular stress. Genetics 156, 559–570.PubMedGoogle Scholar
  90. 90.
    Jung, G., and Masison, D. C. (2001) Guanidine hydrochloride inhibits Hsp104 activity in vivo: a possible explanation for its effect in curing yeast prions. Curr. Microbiol. Submitted.Google Scholar
  91. 91.
    Kushnirov, V. V., Kochneva-Pervukhova, N. V., Cechenova, M. B., Frolova, N. S., and Ter-Avanesyan, M. D. (2000) Prion properties of the Sup35 protein of yeast Pichia methanolica. EMBO J. 19, 324–331.PubMedCrossRefGoogle Scholar
  92. 92.
    Kushnirov, V. V., Ter-Avanesyan, M. D., Didichenko, S. A., Smirnov, V. N., Chernoff, Y. O., Derkach, I. L. et al. (1990) Divergence and conservation of SUP2 (SUP35) gene of yeasts Pichia pinus and Saccharomyces cerevisiae. Yeast 6, 461–472.PubMedCrossRefGoogle Scholar
  93. 93.
    Moriyama, H., Edskes, H. K., and Wickner, R. B. (2000) [URE3] prion propagation in Saccharomyces cerevisiae: requirement for chaperone Hsp104 and curing by overexpressed chaperone Ydj1p. Mol. Cell. Biol. 20, 8916–8922.PubMedCrossRefGoogle Scholar
  94. 94.
    Santoso, A., Chien, P. Osherovich, L. Z., and Weissman, J. S. (2000) Molecular basis of a yeast prion species barrier. Cell 100, 277–288.PubMedCrossRefGoogle Scholar
  95. 95.
    Sondheimer, N. and Lindquist, S. (2000) Rnq1: An epigenetic modifier of preotein function inyeast. Molec. Cell 5, 163–172.PubMedCrossRefGoogle Scholar
  96. 96.
    Speransky, V. Taylor, K. L. Edskes, H. K. Wickner, R. B., and Steven, A., (2001). Prion filament networks in [URE3] cells of Saccharomyces cerevisiae. J. Cell. Biol. submitted.Google Scholar
  97. 97.
    Umland, T. C., Taylor, K. L. Rhee, S., Wickner, R. B., and Davies, D. R. (2001). The crystal structure of the nitrogen catabolite regulatory fragment of the yeast prion protein Ure2p. Proc. natl. Acad. Sci. USA 98, 1459–1464.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Reed B. Wickner
    • 1
  • Herman K. Edskes
    • 1
  • Kimberly L. Taylor
    • 1
  • Marie-Lise Maddelein
    • 1
  • Hiromitsu Moriyama
    • 1
  • B. Tibor Roberts
    • 1
  1. 1.Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of HealthBethesda

Personalised recommendations