Advertisement

Localization of ATP P2X Receptors

  • Xuenong Bo
  • Geoffrey Burnstock
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

The biological effects of extracellular purine compounds were first observed 70 years ago (1). The first evidence that ATP might be a neurotransmitter came from the studies of sensory innervation in the 1950s (2). It was found that antidromic stimulation of sensory nerves led to vasodilatation of rabbit ear artery, which was accompanied by ATP release. In the early 1960s, a nonadrenergic, noncholinergic (NANC) neurotransmission was recognized in the autonomic nervous system. Early evidence indicated that the principal active substance released from at least some of these nerves was ATP (3). The concept of purinergic neurotransmission was proposed by Burnstock in 1972 (4). It is now recognized that ATP acts as a neurotransmitter, cotransmitter, or neuromodulator in many systems (5).

Keywords

Radioligand Binding Assay Urinary Bladder Smooth Muscle Nickel Ammonium Sulfate Tungstosilicic Acid Benzamidine Hydrochloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

REFERENCES

  1. 1.
    Drury, A. N. and Szent-Györgyi, A. (1929) The physiological activity of adenine compounds with special reference to their action upon the mammalian heart. J. Physiol. (Lond.) 68, 213–237.Google Scholar
  2. 2.
    Holton, P. (1959) The liberation of adenosine triphosphate on antidromic stimulation of the sensory nerves. J. Physiol. (Lond.) 145, 494–504.Google Scholar
  3. 3.
    Burnstock, G., Campbell, G., Satchell, D. G., and Smythe, A. (1970) Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br. J. Pharmacol. 40, 668–688.PubMedGoogle Scholar
  4. 4.
    Burnstock, G. (1972) Purinergic nerves. Pharmacol. Rev. 24, 509–581.PubMedGoogle Scholar
  5. 5.
    Burnstock, G. (1997) The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology 36, 1127–1139.PubMedCrossRefGoogle Scholar
  6. 6.
    Burnstock, G. (1978) A basis for distinguishing two types of purinergic receptor, in Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach (Straub, R. W. and Bolis, L., eds.), Raven Press, New York, pp. 107–118.Google Scholar
  7. 7.
    van Calker, D., Müller, M., and Hamprecht, B. (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J. Neurochem. 33, 999–1005.PubMedCrossRefGoogle Scholar
  8. 8.
    Ribeiro, J. A. and Sebastiao, A. M. (1986) Adenosine receptors and calcium: basis for proposing a third (A3) adenosine receptor. Prog. Neurobiol. 26, 179–209.PubMedCrossRefGoogle Scholar
  9. 9.
    Burnstock, G. and Kennedy, C. (1985) Is there a basis for distinguishing two types of P2-purinoceptor? Gen. Pharmacol. 5, 433–440.Google Scholar
  10. 10.
    Gordon, J. L. (1986) Extracellular ATP: effects, sources and fate. Biochem. J. 233, 309–319.PubMedGoogle Scholar
  11. 11.
    O∩nor, S. E., Dainty, I. A. and Leff, P. (1991) Further subclassification of ATP receptors based on agonist studies. Trends Pharmacol. Sci. 12, 137–41.CrossRefGoogle Scholar
  12. 12.
    Webb, T. E., Simon, J., Krishek, B. J., Bateson, A. N., Smart, T. G., King, B. F., et al. (1993) Cloning and functional expression of a brain G protein-coupled ATP receptor. FEBS Lett. 324, 219–25.PubMedCrossRefGoogle Scholar
  13. 13.
    Lustig, K. D., Shiau, A. K., Brake, A. J., and Julius, D. (1993) Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc. Natl. Acad. Sci. USA 90, 5113–117.PubMedCrossRefGoogle Scholar
  14. 14.
    Valera, S., Hussy, N., Evans, R. J., Adami, N., North, R. A., Surprenant, A., and Buell, G. (1994) A new class of ligand-gated ion channel defined by P2X receptor for extracellular ATP. Nature 371, 516–19.PubMedCrossRefGoogle Scholar
  15. 15.
    Brake, A. J., Wagenbach, M. J., and Julius, D. (1994) New structural motif for ligandgated ion channels defined by iontropic ATP receptor. Nature 371, 519–23.PubMedCrossRefGoogle Scholar
  16. 16.
    Abbracchio, M. P. and Burnstock, G. (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol. Ther. 64, 445–75.PubMedCrossRefGoogle Scholar
  17. 17.
    Bo, X., Schoepfer, R., and Burnstock, G. (2000) Molecular cloning and characterization of a novel ATP P2X receptor subtype (cP2X8) from embryonic chick skeletal muscle. J. Biol. Chem. 275, 14,401–14,407.PubMedCrossRefGoogle Scholar
  18. 18.
    Buell, G., Collo, G., and Rassendren, F. (1996) P2X receptors: an emerging channel family. Eur. J. Neurosci. 8, 2221–228.PubMedCrossRefGoogle Scholar
  19. 19.
    Ralevic, V. and Burnstock, G. (1988) Receptors for purines and pyrinidines. Pharmacol. Rev. 50, 413–92.Google Scholar
  20. 20.
    Burnstock, G. (1993) Physiological and pathological roles of purines: an update. Drug Dev. Res. 28, 195–06.CrossRefGoogle Scholar
  21. 21.
    Bo, X. and Burnstock, G. (1989) [3H]α,β-methylene ATP: a radioligand for P2-purinoceptors. J. Auton. Nerv. Syst. 28, 85–88.PubMedCrossRefGoogle Scholar
  22. 22.
    Bo, X. and Burnstock, G. (1990) High-and low-affinity binding sites for [3H]α,β-methylene ATP in rat urinary bladder membranes. Br. J. Pharmacol. 101, 291–296.PubMedGoogle Scholar
  23. 23.
    Bo, X. and Burnstock, G. (1992) Species differences in characteristics and distribution of [3H]α,β-methylene ATP binding sites in urinary bladder and urethra of rat, guinea-pig and rabbit. Eur. J. Pharmacol. 216, 59–66.PubMedCrossRefGoogle Scholar
  24. 24.
    Bo, X. and Burnstock, G. (1993) Heterogeneous distribution of [3H]α,β-methylene ATP binding sites in blood vessels from rat, guinea-pig, and rabbit. J. Vasc. Res. 30, 87–101.PubMedCrossRefGoogle Scholar
  25. 25.
    Michel, A. D. and Humphrey, P. P. A. (1996) High affinity P2X-purinoceptor binding sites for [35S]-adenosine 5−O-[3-thiotriphosphate] in rat vas deferens membranes. Br. J. Pharmacol. 117, 63–70.PubMedGoogle Scholar
  26. 26.
    Young, W. S. III and Kuhar, M. J. (1979) A new method for receptor autoradiography: [3H]opioid receptors in rat brain. Brain Res. 179, 255–270.PubMedCrossRefGoogle Scholar
  27. 27.
    Bo, X. and Burnstock, G. (1994) Distribution of [3H]α,β-methylene ATP binding sites in rat brain and spinal cord. NeuroReport 5, 1601–1604.PubMedCrossRefGoogle Scholar
  28. 28.
    Oglesby, I. B., Lachnit, W. G., Burnstock, G., and Ford, A. P. D. W. (1999) Subunit specificity of polyclonal antisera to the carboxy terminal regions of P2X receptors, P2X1 through P2X7. Drug Dev. Res. 47, 189–195.CrossRefGoogle Scholar
  29. 29.
    Kanjhan, R., Housley, G. D., Thorne, P. R., Christie, D. L., Palmer, D. J., Luo, L., and Ryan, A. F. (1996) Localization of ATP-gated ion channels in cerebellum using P2x2R subunit-specific antisera. NeuroReport 7, 2665–2669.PubMedCrossRefGoogle Scholar
  30. 30.
    Vulchanova, L., Riedl, M. S., Shuster, S. J., Buell, G., Surprenant, A., North, R. A., and Elde, R. (1997) Immunohistochemical study of the P2X2 and P2X3 receptor subunits in rat and monkey sensory neurons and their central terminal. Neuropharmacology 36, 1229–1242.PubMedCrossRefGoogle Scholar
  31. 31.
    Lê, K. T., Villeneuve, P., Ramjaun, A. R., McPherson, P. S., Beaudet, A., and Seguela, P. (1998) Sensory presynaptic and widespread somatodendritic immunolocalization of central ionotropic P2X ATP receptors. Neuroscience 83, 177–190.PubMedCrossRefGoogle Scholar
  32. 32.
    Hansen, M. A., Bennett, M. R., and Barden, J. A. (1999) Distribution of purinergic P2X receptors in the rat heart. J. Auton. Nerv. Syst. 78, 1–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Polak, J. M. and Van Noorden, S. (eds.) (1997) Introduction to Immunocytochemistry. BIOS Scientific, Oxford, UK.Google Scholar
  34. 34.
    Beesley, J. E. (ed.) (1993) Immunocytochemistry: A Practical Approach. IRL Press at Oxford University Press, Oxford, UK.Google Scholar
  35. 35.
    Liposits, Z., Setalo, G., and Flerko, B. (1984) Application of the silver-gold intensified 3,3−diaminobenzidine chromogen to the light and electron microscopic detection of the luteinzing hormone releasing hormone system of the rat brain. Neuroscience 13, 513–524.PubMedCrossRefGoogle Scholar
  36. 36.
    Loesch, A. and Burnstock, G. (1998) Electron-immunocytochemical localization of P2X1 receptors in the rat cerebellum. Cell Tissue Res. 294, 253–260.PubMedCrossRefGoogle Scholar
  37. 37.
    Llewellyn-Smith, I. J. and Burnstock, G. (1998) Ultrastractural localization of P2X3 receptors in rat sensory neurons. NeuroReport, 9, 2545–2550.PubMedCrossRefGoogle Scholar
  38. 38.
    Bo, X., Alavi, A., Xiang, Z., Oglesby, I. B., Ford, A. P. D. W., and Burnstock, G. (1999) Distribution of ATP-gated P2X2 and P2X3 receptor immunoreactive nerves in rat taste buds. NeuroReport 10, 1107–1111.PubMedCrossRefGoogle Scholar
  39. 39.
    Polak, J. M. and McGee, J. D. (eds.) (1998) In Situ Hybridization: Principles and Practice. Oxford University Press, Oxford,UK.Google Scholar
  40. 40.
    Wilkinson, D. G. (ed.) (1998) In Situ Hybridization: A Practical Approach. Oxford University Press, Oxford, UK.Google Scholar
  41. 41.
    Bo, X., Zhang, Y., Nassar, M., Burnstock, G., and Schoepfer, R. (1995) A P2X purinoceptor cDNA with novel pharmacological profile. FEBS Lett. 375, 129–133.PubMedCrossRefGoogle Scholar
  42. 42.
    Xiang, Z., Bo, X., and Burnstock, G. (1998) Localization of ATP-gated P2X receptor immunoreactivity in rat sensory and sympathetic ganglia. Neurosci. Lett. 256, 105–108.PubMedCrossRefGoogle Scholar
  43. 43.
    Bradbury, E. J., Burnstock, G., and McMahon, S. B. (1998) The expression of P2X3 purinoceptors in sensory neurons: effects of axotomy and glial-derived neurotrophic factor. Mol. Cell. Neurosci. 12, 256–268.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Xuenong Bo
    • 1
  • Geoffrey Burnstock
    • 1
  1. 1.Autonomic Neuroscience InstituteRoyal Free and University College Hospital Medical SchoolLondonUK

Personalised recommendations