Advertisement

Localizing Ion Channels with Scanning Probe Microscopes: A Perspective

  • Daniel M. Czajkowsky
  • Zhifeng Shao
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

It is now widely appreciated in cell biology that there are two significant modes, beyond synthesis and degradation, by which the cell can regulate its enzymes: covalent modification and subcellular localization. The former mode may be studied with isolated components, and so may be investigated, to great detail, under a variety of well-controlled conditions. However, the localization of proteins must be studied within the context of the more complicated environment of a cell, and as such, is much more technically challenging. Clear examples of the importance of the subcellular location of proteins on the proper functioning of a cell is well-known in the membrane channel field, with the clusters of channels in the opposing membranes of a synapse or the aggregates of channels within the nodes of Ranvier. However, as studies of rafts (domains within the plasma-membrane-enriched in selected lipids and proteins [1]) have demonstrated, active control of the spatial distribution of membrane proteins, lipids, and cytosolic components at the level of the plasma membrane is likely to be a general mechanism underlying many cellular processes.

Keywords

Atomic Force Microscope Mica Substrate Phenyl Ketone Cantilever Oscillation Tapered Optical Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Brown, D. A. and London, E. (1998) Functions of lipid rafts in biological membranes. Annu. Rev. Cell Devel. Biol. 14, 111–136.CrossRefGoogle Scholar
  2. 2.
    Hansma, H. G. and Pietrasanta, L. (1998) Atomic force microscopy and other scanning probe microscopies. Curr. Opin. Chem. Biol. 2, 579–584.PubMedCrossRefGoogle Scholar
  3. 3.
    Shao, Z., Mou, J., Czajkowsky, D. M., Yang, J., and Yuan, J.-Y. (1996) Biological atomic force microscopy: what is achieved and what is needed. Adv. Phys. 45, 1–86.CrossRefGoogle Scholar
  4. 4.
    Binnig, G., Quate, C. F., and Gerber, Ch. (1986) Atomic force microscope. Phys. Rev. Lett. 56, 930–933.PubMedCrossRefGoogle Scholar
  5. 5.
    Linder, A., Weiland, U., and Apell, H.-J. (1999) Novel polymer substrates for SFM investigations of living cells, biological membranes, and proteins. J. Struct. Biol. 126, 16–26.PubMedCrossRefGoogle Scholar
  6. 6.
    Scheuring, S., Müller, D. J., Ringler, P., Heymann, J. B., and Engel, A. (1999) Imaging streptavidin 2D crystals on biotinylated lipid monolayers at high resolution with the atomic force microscope. J. Microsc. 193, 28–35.PubMedCrossRefGoogle Scholar
  7. 7.
    Kowalewski, T. and Holtzman, D. M. (1999) In situ atomic force microscopy of Alzheimer’s β-amyloid peptide on different substrates: new insights into the mechanism of β-sheet formation. Proc. Natl. Acad. Sci. USA 96, 3688–3693.PubMedCrossRefGoogle Scholar
  8. 8.
    Karrasch, S., Dolder, M., Schabert, F., Ramsden, J., and Engel, A. (1993) Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution. Biophys. J. 65, 2437–2446.PubMedCrossRefGoogle Scholar
  9. 9.
    Czajkowsky, D. M., Iwamoto, H., Cover, T. L., and Shao, Z. (1999) The vacuolating toxin from Helicobacter pylori forms hexameric pores in lipid bilayers at low pH. Proc. Natl. Acad. Sci. USA 96, 2001–2006.PubMedCrossRefGoogle Scholar
  10. 10.
    Engel, A., Lyubchenko, Y., and Müller, D. (1999) Atomic force microscopy: a powerful tool to observe biomolecules at work. Trends Cell Biol. 9, 77–80.PubMedCrossRefGoogle Scholar
  11. 11.
    Czajkowsky, D. M. and Shao, Z. (1998) Submolecular resolution of single macromolecules with atomic force microscopy. FEBS Lett. 430, 51–54.PubMedCrossRefGoogle Scholar
  12. 12.
    Rotsch, C., Jacobson, K., and Radmacher, M. (1999) Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc. Natl. Acad. Sci. USA 96, 921–926.PubMedCrossRefGoogle Scholar
  13. 13.
    Damjanovich, S., Vereb, G., Schaper, A., Jenei, A., Matho, J., Pascual Starink, J. P., et al. (1995) Structural hierarchy in the clustering of HLA class I molecules in the plasma membrane of human lymphoblastoid cells. Proc. Natl. Acad. Sci. USA 92, 1122–1126.PubMedCrossRefGoogle Scholar
  14. 14.
    Jenei, A., Varga, S., Bene, L., Matyus, L., Bodnar, A., Bacso, Z., et al. (1997) HLA class I and II antigens are partially co-clustered in the plasma membrane of human lymphoblastoid cells. Proc. Natl. Acad. Sci. USA 94, 7269–7274.PubMedCrossRefGoogle Scholar
  15. 15.
    Bruchez, M., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A. P. (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016.PubMedCrossRefGoogle Scholar
  16. 16.
    Schenider, S. W., Sritharan, K. C., Geibel, J. P., Oberleithner, H., and Jena, B. P. (1997) Surface dynamics in living acinar cells imaged by atomic force microscopy: Identification of plasma membrane structures involved in exocytosis. Proc. Natl. Acad. Sci. USA 94, 316–321.CrossRefGoogle Scholar
  17. 17.
    Darnell, J., Lodish, H., and Baltimore, D. (1990) Molecular Cell Biology. Scientific American Books, Inc., NY.Google Scholar
  18. 18.
    Putman, C. A., van der Wert, K. O., de Grooth, B. G., van Hulst, N. F., and Greve, J. (1994) Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy. Biophys. J. 67, 1749–1753.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhong, Q., Inniss, D., Kjoller, K., and Elings, V. B. (1993) Fractured polymer/ silica fiber surface studied by tapping mode atomic force microscopy. Surf. Sci. Lett. 290, L688–L692.CrossRefGoogle Scholar
  20. 20.
    Hansma, P. K., Cleveland, J. P., Radmacher, M., Walters, D. A., Hillner, P. E., Bezanilla, M., et al. (1994) Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 64, 1738–1740.CrossRefGoogle Scholar
  21. 21.
    Lantz, M. A., O’Shea, S. J., and Welland, M. E. (1994) Force microscopy imaging in liquids using ac techniques. Appl. Phys. Lett. 65, 409–411.CrossRefGoogle Scholar
  22. 22.
    Han, W., Mou, J., Sheng, J., Yang, J., and Shao, Z. (1995) Cryo atomic force microscopy: a new approach for biological imaging at high resolution. Biochemistry 34, 8215–8220.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang, Y. Y., Sheng, S., and Shao, Z. (1996) Imaging biological structures with the cryo atomic force microscope. Biophys. J. 71, 2168–2176.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang, Y. Y., Shao, Z., Somlyo, A. P., and Somlyo, A. V. (1997) Cryo-atomic force microscopy of smooth muscle myosin. Biophys. J. 72, 1308–1318.PubMedCrossRefGoogle Scholar
  25. 25.
    Boal, D. H. and Boey, S. K. (1995) Barrier-free path of directed protein motion in the erythrocyte plasma membrane. Biophys. J. 69, 372–379.PubMedCrossRefGoogle Scholar
  26. 26.
    Hafner, J. H., Cheung, C. L., and Lieber, C. M. (1999) Growth of nanotubes for probe microscopy tips. Nature 398, 761,762.CrossRefGoogle Scholar
  27. 27.
    Hafner, J. H., Cheung, C. L., and Lieber, C. M. (1999) Direct growth of singlewalled carbon nanotube scanning probe microscopy tips. J. Am. Chem. Soc. 121, 9750,9751.CrossRefGoogle Scholar
  28. 28.
    Cai, M. and Jordan, P. C. (1990) How does vestibule surface charge affect ion conductivity and toxin binding in a sodium channel? Biophys. J. 57, 883–891.PubMedCrossRefGoogle Scholar
  29. 29.
    Adcock, C., Smith, G. R., and Sanson, M. S. P. (1998) Electrostatics and the ion selectivity of ligand-gated channels. Biophys. J. 75, 1211–1222.PubMedCrossRefGoogle Scholar
  30. 30.
    Hoh, J. H., Revel, J.-P., and Hansma, P. K. (1992) Tip-sample interaction in atomic force microscopy: I. Modulating adhesion between silicon nitride and glass. Nanotechnology 2, 119–122.CrossRefGoogle Scholar
  31. 31.
    Czajkowsky, D. M., Allen, M. J., Elings, V., and Shao, Z. (1998) Direct visualization of surface charge in aqueous solution. Ultramicrosccopy 74, 1–5.CrossRefGoogle Scholar
  32. 32.
    Heinz, W. F. and Hoh, J. H. (1999) Relative surface charge density mapping with the atomic force microscope. Biophys. J. 76, 528–538.PubMedCrossRefGoogle Scholar
  33. 33.
    Hinterdorfer, P., Baumbartner, W., Gruber, H. J., Schilcher, K., and Schindler, H. (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. USA 93, 3477–3481.PubMedCrossRefGoogle Scholar
  34. 34.
    Raab, A., Han, W., Badt, D., Smith-Gill, S. J., Lindsay, S. M., Schindler, H., and Hinterdorfer, P. (1999) Antibody recognition imaging by force microscopy. Nature Biotech. 17, 902–905.Google Scholar
  35. 35.
    Florin, E.-L., Moy, V. T., and Gaub, H. E. (1994) Adhesion forces between individual ligand-receptor pairs. Science 264, 415–417.PubMedCrossRefGoogle Scholar
  36. 36.
    Moy, V. T., Florin, E.-L., and Gaub, H. E. (1994) Intermolecular forces and energies between ligands and receptors. Science 266, 257–259.PubMedCrossRefGoogle Scholar
  37. 37.
    Lee, G. U., Chrisey, L. A., and Colton, R. J. (1994) Direct measurement of the forces between complementary strands of DNA. Science 266, 771–773.PubMedCrossRefGoogle Scholar
  38. 38.
    Dammer, U., Popescu, O., Wagner, P., Anselmetti, D., Güntherodt, H.-J., and Misevic, G. N. (1995) Binding strength between cell adhesion proteoglycans measured by atomic force microscopy. Science 267, 1173–1175.PubMedCrossRefGoogle Scholar
  39. 39.
    Boland, T. and Ratner, B. D. (1995) Direct measurement of hydrogen bonding in DNA nucleotide bases by atomic force microscopy. Proc. Natl. Acad. Sci. USA 92, 5297–5301.PubMedCrossRefGoogle Scholar
  40. 40.
    Betzig, E. and Chichester, R. J. (1993) Single molecules observed by near field scanning optical microscopy. Science 262, 1422–1425.PubMedCrossRefGoogle Scholar
  41. 41.
    Zenhausern, F., Martin, Y., and Wickramasinghe, H. K. (1995) Scanning interferometric apertureless microscopy: optical imaging at 10 Ängstrom resolution. Science 269, 1083–1085.PubMedCrossRefGoogle Scholar
  42. 42.
    Hwang, J., Gheber, L. A., Margolis, L., and Edidin, M. (1998) Domains in cell plasma membranes investigated by near-field scanning optical microscopy. Biophys. J. 74, 2184–2190.PubMedCrossRefGoogle Scholar
  43. 43.
    Enderle, Th., Ha, T., Ogletree, D. F., Chemla, D. S., Magowan, C., and Weiss, S. (1997) Membrane specific mapping and colocalization of malarial and host skeletal proteins in the Plasmodium falciparum infected erythrocyte by dualcolor near-field scanning optical microscopy. Proc. Natl. Acad. Sci. USA 94, 520–525.PubMedCrossRefGoogle Scholar
  44. 44.
    Proksch, R., Lal, R., Hansma, P. K., Morse, D., and Stucky, G.(1996) Imaging the internal and external structure of membranes in fluid: TappingMode scanning ion conductance microscopy. Biophys. J. 71, 2155–2157.PubMedCrossRefGoogle Scholar
  45. 45.
    Korchev, Y. E., Bashford, C. L., Milovanovic, M., Vodyanoy, I., and Lab, M. J. (1997) Scanning ion conductance microscopy of living cells. Biophys. J. 73, 653–658.PubMedCrossRefGoogle Scholar
  46. 46.
    University of Virginia Patent FoundationGoogle Scholar
  47. 47.
    Vickery, S. A. and Dunn, R. C. (1999) Scanning near-field fluorescence resonance energy transfer microscopy. Biophys. J. 76, 1812–1818.PubMedCrossRefGoogle Scholar
  48. 48.
    Albillos, A., Dernick, G., Horstmann, H., Almers, W., Detoledo, G. A., and Lindau, M. (1997) The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389, 509–512.PubMedCrossRefGoogle Scholar
  49. 49.
    Viani, M. B., Schaffer, T. E., Paloczi, G. T., Pietrasanta, L. I., Smith, B. L., Thompson, J. B., et al. (1999) Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers. Rev. Sci. Instr. 70, 4300–4303.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Daniel M. Czajkowsky
    • 1
  • Zhifeng Shao
    • 1
  1. 1.Department of Molecular Physiology and Biological Physics and Biophysics ProgramUniversity of Virginia School of MedicineCharlottesville

Personalised recommendations