Dynamic AFM of Patch Clamped Membranes

  • Kenneth Snyder
  • Ping C. Zhang
  • Frederick Sachs
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


The investigative power of a single technique can be significantly enhanced by the simultaneous addition of a second, independent technique. This is especially true for the combination of atomic force microscopy (AFM) and patch-clamp recording for the study of biological systems because each technique has the ability to observe dynamic molecular events under physiological conditions. Merging these approaches will have direct application in examining structures in which mechanical and electrical parameters are paramount; for example, the study of mechanosensitive ion channels (MSCs), flexoelectricity (mechanical/electrical coupling), and outer-hair-cell electromotility. In addition, subtle advantages of this arrangement can be beneficial in studying related problems of membrane mechanics and voltage- and ligand-sensitive ion-channel physiology. Correlating mechanical and electrical interactions on a molecular level has only been attempted in a few instances. This chapter introduces our attempt to create a setup of standard components that allows concurrent use of both methods without limiting the practical use of either technique individually. We discuss experimental results exploiting this setup and consider the possibilities for further applications. We will begin with a review of some history of use of AFM and patch-clamp (summarized in Table 1)

Table 1 Summary of Patch-Clamp Scanning Force Microscope Applications

Patch-Clamp Applications

Identification and classification of all types of ion channels based on biophysical properties Whole cell measurements allow clarification of the relative importance and physiological role of a specific type of ion channel in a given cell type. Capacitance measurements yield current density and assessment of endocytotic and exocytotic activity Instantaneous manipulation of membrane voltage or current.


The number of channels in a patch or whole cell is not known. Response time of pressure pulses is limited. Local variation of membrane tension during pressure steps is unknown. Natural membrane structure is altered during patch formation. Lack of consistent sealing protocols might cause variability in biophysical parameters. Mechanical properties estimated using micropipet aspiration are confounded by the mechanics of patch adhesion.

AFM Applications

High-resolution topographic images of biological samples (membranes and proteins). Images of ion channels yield important substructure (subunits, pore diameter, binding sites). Dynamic observation (directly image conformational changes). Ability to apply small forces and make elasticity measurements. Ability to chemically modify the tip and make images or force spectroscopy. Use as a nanotool to cut, push, or pull in a controlled way.


Low lateral resolution when imaging unsupported biological samples. Difficulty locating object of interest within bilayers or on cell surface. Undefined contact area between tip and sample (pressure) when doing elasticity measurements. Can be overcome by using linker molecules of known stiffness to pull on supported membranes. Limited understanding of tip sample interactions.

Table 1 (contd.) Summary of Patch-Clamp Scanning Force Microscope Applications




Use of micropipet as support for imaging of biological membranes. Comparison of independent measures of channel density and surface area (electrical and topographic estimates). Correlation of dynamic topological detail of ion channels with ionic currents (i.e., correlate conductance with number of subunits, pore size, conformational changes, and binding events). Use of patch-clamp to identify channels of interest for AFM imaging. Clarification of patch morphology by imaging substructure on inner or outer membranes of patch. Tool of choice for the study of mechanoelectric transduction (i.e., application of force directly to MSC while monitoring channel conductance). Tool of choice for studying electromechanical transduction (i.e., flexoelectricity, OHC electromotility) Estimates of membrane mechanics using well-defined probe sample adhesion points (especially if using linkers to specific proteins in the membrane).


Atomic Force Microscopy Contact Force Atomic Force Microscopy Image Lateral Resolution Patch Pipette 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hille, B. (1992) Ionic Channels of Excitable Membranes. Sinauer Associates Inc., Sunderland, MA.Google Scholar
  2. 2.
    Horn, R. (1991) Diffusion of nystatin in plasma membrane is inhibited by a glass-membrane seal [published erratum appears in Biophys. J. 60(4), 985]. Biophys. J. 60, 329–333.PubMedCrossRefGoogle Scholar
  3. 3.
    Fernandez, J. M., Neher, E., and Gomperts, B. D. (1984) Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature 312,5993), 453–455.PubMedCrossRefGoogle Scholar
  4. 4.
    Joshi, C. and Fernandez, J. M. (1989) Capacitance measurements: an analysis of the phase detector technique used to study exocytosis and endocytosis. Biophys. J. 56, 1153–1162.CrossRefGoogle Scholar
  5. 5.
    Dilger, J. P., Brett, R. S., Poppers, D. M., and Liu, Y. (1991) The temperature dependence of some kinetic and conductance properties of acetylcholine receptor channels. Biochim. Biophys. Acta 1063, 253–258.PubMedCrossRefGoogle Scholar
  6. 6.
    Sachs, F. (1999) Practical limits on the maximal speed of solution exchange for patch-clamp experiments. Biophys J. 77, 682–690.PubMedCrossRefGoogle Scholar
  7. 7.
    Besch, S. D. and Sachs, F. (2000) A Compact, High Speed, Air Pressure Servo. In press.Google Scholar
  8. 8.
    Mcbride, D. W. and Hamill, O. P. (1995) A fast pressure-clamp technique for studying mechanogated channels, in Single-Channel Recording (Sakmann, B. and Neher, E., eds.), Plenum, New York, pp. 329–340.Google Scholar
  9. 9.
    Martinac, B. (1993) Mechanosensitive ion channels: biophysics and physiology. Thermodynamics of Cell Surface Receptors (Jackson, M., ed.), CRC Press, Boca Raton, FL, pp. 327–351.Google Scholar
  10. 10.
    Sachs, F. (1992) Stretch sensitive ion channels: an update, in Sensory Transduction (Corey, D. P. and Roper, S. D., eds.), Rockefeller University Press, Society General Physiology, NY, pp. 241–260.Google Scholar
  11. 11.
    Sackin, H. (1995) Stretch activated ion channels. Kidney Int. 48, 1134–1147.PubMedCrossRefGoogle Scholar
  12. 12.
    Sachs, F. and Morris, C. (1998) Mechanosensitive ion channels in non specialized cells, in Reviews of Physiology and Biochemistry and Pharmacology (Blaustein, M. P., et al., eds.), Springer, Berlin, pp. 1–78.Google Scholar
  13. 13.
    Sokabe, M. and Sachs, F. (1992) Towards a molecular mechanism of activation in mechanosensitive ion channels, in Advances in Comparative and Environmental Physiology, vol. 10 (Ito, F., ed.), Springer-Verlag, Berlin, pp. 55–77.Google Scholar
  14. 14.
    Sukharev, S., Sigurdson, W., Kung, C., and Sachs, F. (1999) Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J. Gen. Physiol. 113, 525–539.PubMedCrossRefGoogle Scholar
  15. 15.
    Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. Eur. J. Physiol. 391, 85–100.CrossRefGoogle Scholar
  16. 16.
    Guharay, F. and Sachs, F. (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J. Physiol. (Lond.) 352, 685–701.Google Scholar
  17. 17.
    Yang, X. C. and Sachs, F. (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243, 1068–1071.PubMedCrossRefGoogle Scholar
  18. 18.
    Sokabe, M., Sachs, F., and Jing, Z. (1991) Quantitative video microscopy of patch clamped membranes: stress, strain, capacitance and stretch channel activation. Biophys. J. 59, 722–728.PubMedCrossRefGoogle Scholar
  19. 19.
    Small, D. L. and Morris, C. E. (1994) Delayed activation of single mechanosensitive channels in Lymnaea neurons. Am. J. Physiol. 267, C598–C606.PubMedGoogle Scholar
  20. 20.
    Hamill, O. P. and McBride, D. W., Jr. (1992) Rapid adaptation of single mechanosensitive channels in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 89, 7462–7466.PubMedCrossRefGoogle Scholar
  21. 21.
    Suchyna, T. M., Johnson, J. H., Clemo, H. F., Huang, Z. H., Gage, D. A., Baumgarten, C. M., and Sachs, F. (2000) Identification of a peptide toxin from Grammostola spatulata spider venom that blocks stretch activated channels. J. Gen. Physiol. 115, 583–598.PubMedCrossRefGoogle Scholar
  22. 22.
    Fahlke, C. and Rudel, R. (1992) Giga-seal formation alters properties of sodium channels of human myoballs. Pflugers Arch. 420, 248–254.PubMedCrossRefGoogle Scholar
  23. 23.
    Hochmuth, R. M. (2000) Micropipette aspiration of living cells. [Review] [34 refs]. J. Biomechanics 33, 15–22.CrossRefGoogle Scholar
  24. 24.
    Horber, J. K., Mosbacher, J., Haberle, W., Ruppersberg, J. P., and Sakmann, B. (1995) A look at membrane patches with a scanning force microscope. Biophys. J. 68, 1687–1693.PubMedCrossRefGoogle Scholar
  25. 25.
    Drake, B. Prater, C. B. Weisenhorn, A. L., Gould, S. A., Albrecht, T. R., Quate, C. F., et al. (1989) Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243, 1586–1589.PubMedCrossRefGoogle Scholar
  26. 26.
    Radmacher, M., Hillner, P. E., and Hansma, P. K. (1994) Scanning nearfield optical microscope using microfabricated probes. Rev. Sci. Instrum. 65, 2737–2738.CrossRefGoogle Scholar
  27. 27.
    Hansma, H. and Hoh, J. (1994) Biomolecular imaging with the atomic force microscope. Ann. Rev. Biophys. Biomol. Struct. 23, 115–139.CrossRefGoogle Scholar
  28. 28.
    Lal, R., Kim, H., Garavito, R. M., and Arnsdorf, M. F. (1993) Imaging of reconstituted biological channels at molecular resolution by atomic force microscopy. Am. J. Physiol. 265, C851–C856.PubMedGoogle Scholar
  29. 29.
    Jena, B. P., Schneider, S. W., Geibel, J. P., Webster, P., Oberleithner, H., and Sritharan, K. C. (1997) Gi regulation of secretory vesicle swelling examined by atomic force microscopy. Proc. Natl. Acad. Sci. USA 94, 13,317–13,322.PubMedCrossRefGoogle Scholar
  30. 30.
    Haberle, W., Horber, J. K., and Binnig, G. (1991) Force microscopy on living cells. J. Vac. Sci. Technol. B 9, 1210–1213.CrossRefGoogle Scholar
  31. 31.
    Horber, J. K., Haberle, W., Ohnesorge, F., Binnig, G., Liebich, H. G., Czerny, C. P., et al. (1992) Investigation of living cells in the nanometer regime with the scanning force microscope. Scan. Microsc. 6, 919–929.Google Scholar
  32. 32.
    Henderson, E. (1994) Imaging of living cells by atomic force microscopy. Prog. Surface Sci. 46, 39–60.CrossRefGoogle Scholar
  33. 33.
    Henderson, R. M., Schneider, S., Li, Q., Hornby, D., White, S. J., and Oberleithner, H. (1996) Imaging ROMK1 inwardly rectifying ATP-sensitive K+ channel protein using atomic force microscopy. Proc. Natl. Acad. Sci. USA 93, 8756–8760.PubMedCrossRefGoogle Scholar
  34. 34.
    Radmacher, M. (1997) Measuring the elastic properties of biological samples with the AFM. IEEE Eng. Med. Biol. 16, 47–57.CrossRefGoogle Scholar
  35. 35.
    Schneider, S. W., Yano, Y., Sumpio, B. E., Jena, B. P., Geibel, J. P., Gekle, M., and Oberleithner, H. (1997) Rapid aldosterone-induced cell volume increase of endothelial cells measured by the atomic force microscope. Cell Biol. Int. 21, 759–768.PubMedCrossRefGoogle Scholar
  36. 36.
    Fritzsche, W., Takac, L., and Henderson, E. (1997) Application of atomic force microscopy to visualization of DNA, chromatin, and chromosomes. [Review] [65 refs]. Crit. Rev. Eukaryotic Gene Exp. 7, 231–240.Google Scholar
  37. 37.
    Hansma, H. G., Kim, K. J., Laney, D. E., Garcia, R. A., Argaman, M., Allen, M. J., Parsonsand, S. M. (1997) Properties of biomolecules measured from atomic force microscope images: a review. [Review] [59 refs]. J. Struct. Biol. 119, 99–108.PubMedCrossRefGoogle Scholar
  38. 38.
    Yang, Y., Sweeney, W. V., Schneider, K., Chait, B. T., and Tam, J. P. (1994) Two-step selective formation of three disulfide bridges in the synthesis of the C-terminal epidermal growth factor-like domain in human blood coagulation factor IX. Protein Sci. 3, 1267–1275.PubMedCrossRefGoogle Scholar
  39. 39.
    Lal, R. and Yu, L. (1993) Atomic force microscopy of cloned nicotinic acetylcholine receptor expressed in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 90, 7280–7284.PubMedCrossRefGoogle Scholar
  40. 40.
    Lal, R. and John, S. A. (1994) Biological applications of atomic force microscopy. [Review]. Am. J. Physiol. 266, C1–21.PubMedGoogle Scholar
  41. 41.
    John, S. A., Saner, D., Pitts, J. D., Holzenburg, A., Finbow, M. E., and Lal, R. (1997) Atomic force microscopy of arthropod gap junctions. J. Struct. Biol. 120, 22–31.PubMedCrossRefGoogle Scholar
  42. 42.
    Lal, R. (1996) Imaging molecular structure of channels and receptors with an atomic force microscope. Scan. Microsc. 10(Suppl.), 81–95.Google Scholar
  43. 43.
    Lal, R., John, S. A., Laird, D. W., and Arnsdorf, M. F. (1995) Heart gap junction preparations reveal hemiplaques by atomic force microscopy. Am. J. Physiol. 268, C968–C977.PubMedGoogle Scholar
  44. 44.
    Hoh, J. H., Sosinsky, G. E., Revel, J. P., and Hansma, P. K. (1993) Structure of the extracellular surface of the gap junction by atomic force microscopy. Biophys. J. 65, 149–163.PubMedCrossRefGoogle Scholar
  45. 45.
    Oberleithner, H., Brinckmann, E., Schwab, A., and Krohne, G. (1994) Imaging nuclear pores of aldosterone-sensitive kidney cells by atomic force microscopy. Proc. Natl. Acad. Sci. USA 91, 9784–9788.PubMedCrossRefGoogle Scholar
  46. 46.
    Folprecht, G., Schneider, S., and Oberleithner, H. (1996) Aldosterone activates the nuclear pore transporter in cultured kidney cells imaged with atomic force microscopy. Pflugers Arch. Eur. J. Physiol. 432, 831–838.CrossRefGoogle Scholar
  47. 47.
    Schneider, S., Folprecht, G., Krohne, G., and Oberleithner, H. (1995) Immunolocalization of lamins and nuclear pore complex proteins by atomic force microscopy. Pflugers Arch. Eur. J. Physiol. 430, 795–801.CrossRefGoogle Scholar
  48. 48.
    Perez-Terzic, C., Pyle, J., Jaconi, M., Stehno-Bittel, L., and Clapham, D. E. (1996) Conformational states of the nuclear pore complex induced by depletion of nuclear Ca2+ stores. Science 273, 1875–1877.PubMedCrossRefGoogle Scholar
  49. 49.
    Wang, H. and Clapham, D. E. (1999) Conformational changes of the in situ nuclear pore complex. Biophys. J. 77, 241–247.PubMedCrossRefGoogle Scholar
  50. 50.
    Radmacher, M., Fritz, M., and Hansma, P. K. (1995) Imaging soft samples with the atomic force microscope: gelatin in water and propanol. Biophys. J. 69, 264–270.PubMedCrossRefGoogle Scholar
  51. 51.
    Wagner, P. (1998) Immobilization strategies for biological scanning probe microscopy. [Review] [58 refs]. FEBS Lett. 430, 112–115.PubMedCrossRefGoogle Scholar
  52. 52.
    Korchev, Y. E., Bashford, C. L., Milovanovic, M., Vodyanoy, I., and Laband, M. J. (1997) Scanning ion conductance microscopy of living cells. Biophys. J. 73, 653–658.PubMedCrossRefGoogle Scholar
  53. 53.
    Merkel, R., Nassoy, P., Leung, A., Ritchie, K., and Evans, E. (1999) Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53.PubMedCrossRefGoogle Scholar
  54. 54.
    Engel, A., Lyubchenko, Y., and Muller, D. (1999) Atomic force microscopy: a powerful tool to observe biomolecules at work. [Review] [39 refs]. Trends Cell Biol. 9, 77–80.PubMedCrossRefGoogle Scholar
  55. 55.
    Schabert, F. A., Henn, C., and Engel, A. (1995) Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy. Science 268, 92–94.PubMedCrossRefGoogle Scholar
  56. 56.
    Muller, D. J. and Engel, A. (1999) Voltage and pH-induced channel closure of porin OmpF visualized by atomic force microscopy. J. Mol. Biol. 285, 1347–1351.PubMedCrossRefGoogle Scholar
  57. 57.
    Muller, D. J., Sass, H. J., Muller, S. A., Buldt, G., and Engel, A. (1999) Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane. J. Mol. Biol. 285, 1903–1909.PubMedCrossRefGoogle Scholar
  58. 58.
    Yang, J., Mou, J., and Shao, Z. (1994) Structure and stability of pertussis toxin studied by in situ atomic force microscopy. FEBS Lett. 338, 89–92.PubMedCrossRefGoogle Scholar
  59. 59.
    Czajkowsky, D. M. and Shao, Z. (1998) Submolecular resolution of single macromolecules with atomic force microscopy. [Review] [40 refs]. FEBS Lett. 430, 51–54.PubMedCrossRefGoogle Scholar
  60. 60.
    Fisher, T. E., Marszalek, P. E., Oberhauser, A. F., Carrion, V., and Fernandez, J. M. (1999) The micro-mechanics of single molecules studied with atomic force microscopy. [Review] [35 refs]. J. Physiol. 520 Pt 1, 5–14.PubMedCrossRefGoogle Scholar
  61. 61.
    Shao, Z., Yang, J., and Somlyo, A. P. (1995) Biological atomic force microscopy: from microns to nanometers and beyond. [Review] [134 refs]. Annu. Rev. Cell. Dev. Biol. 11, 241–265.PubMedCrossRefGoogle Scholar
  62. 62.
    Fritz, M., Radmacher, M., and Gaub, H. E. (1994) Granula motion and membrane spreading during activation of human platelets imaged by atomic force microscopy. Biophys. J. 66, 1328–1334.PubMedCrossRefGoogle Scholar
  63. 63.
    Muller, D. J., Baumeister, W., and Engel, A. (1996) Conformational change of the hexagonally packed intermediate layer of Deinococcus radiodurans monitored by atomic force microscopy. J. Bacteriol. 178, 3025–3030.PubMedGoogle Scholar
  64. 64.
    Thalhammer, S., Stark, R. W., Muller, S., Wienberg, J., and Heckl, W. M. (1997) The atomic force microscope as a new microdissecting tool for the generation of genetic probes. J. Struct. Biol. 119, 232–237.PubMedCrossRefGoogle Scholar
  65. 65.
    Fotiadis, D., Muller, D. J., Tsiotis, G., Hasler, L., Tittmann, P., Mini, T., et al. (1998) Surface analysis of the photosystem I complex by electron and atomic force microscopy. J. Mol. Biol. 283, 83–94.PubMedCrossRefGoogle Scholar
  66. 66.
    Muller, D. J., Buldt, G., and Engel, A. (1995) Force-induced conformational change of bacteriorhodopsin. J. Mol. Biol. 249, 239–243.PubMedCrossRefGoogle Scholar
  67. 67.
    Schoenenberger, C. A. and Hoh, J. H. (1994) Slow cellular dynamics in MDCK and R5 cells monitored by time-lapse atomic force microscopy. Biophys. J. 67, 929–936.PubMedCrossRefGoogle Scholar
  68. 68.
    Radmacher, M., Fritz, M., Kacher, C. M., Cleveland, J. P., and Hansma, P. K. (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70, 556–567.PubMedCrossRefGoogle Scholar
  69. 69.
    Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., and Gaub, H. E. (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM [see comments]. Science 276, 1109–1112.PubMedCrossRefGoogle Scholar
  70. 70.
    Florin, E. L., Rief, M., Lehmann, H., Ludwig, M., Dornmair, C., Moy, V. T., and Gaub, H. E. (1995) Sensing specific molecular interasctions with the Atomic Force Microscope. Biosens. Bioelectron. 10, 895–901.CrossRefGoogle Scholar
  71. 71.
    Moy, V. T., Florin, E. L., and Gaub, H. E. (1994) Adhesive forces between ligand and receptor measured by Afm. Colloids Surfaces A-Physicochem. Eng. Aspects 93, 343–348.CrossRefGoogle Scholar
  72. 72.
    Bustamante, J. O., Liepins, A., Prendergast, R. A., Hanover, J. A., and Oberleithner, H. (1995) Patch clamp and atomic force microscopy demonstrate TATA-binding protein (TBP) interactions with the nuclear pore complex. J. Membr. Biol. 146, 263–272.PubMedGoogle Scholar
  73. 73.
    Horber, J. K., Mosbacher, J., and Haberle, W. (1995) Force microscopy on membrane patches, in Single-Channel Recording (Sakmann, B. and Neher, E., eds.), Plenum, New York, pp. 375–393.Google Scholar
  74. 74.
    Hoh, J. H. and Schoenenberger, C. A. (1994) Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J. Cell Sci. 107, 1105–1114.PubMedGoogle Scholar
  75. 75.
    Sokabe, M. and Sachs, F. (1990) The structure and dynamics of patch-clamped membranes: a study by differential interference microscopy. J. Cell Biol. 111, 599–606.PubMedCrossRefGoogle Scholar
  76. 76.
    McEwen, B. F., Song, M. J., Ruknudin, A., Barnard, D. P., Frank, J., and Sachs, F. (1990) Tomographic three dimensional reconstruction of patch clamped membranes imaged with the high voltage electron microscope. XII Intl. Cong. El. Microsc. 522–523 (Abstract).Google Scholar
  77. 77.
    Ruknudin, A., Song, M. J., and Sachs, F. (1991) The ultrastructure of patchclamped membranes: a study using high voltage electron microscopy. J. Cell Biol. 112, 125–134.PubMedCrossRefGoogle Scholar
  78. 78.
    Akinlaja, J. and Sachs, F. (1998) The breakdown of cell membranes by electrical and mechanical stress. Biophys. J. 75, 247–254.PubMedCrossRefGoogle Scholar
  79. 79.
    Horber, J. K. H., Mosbacher, J., Haberle, W., Ruppersberg, J. P., and Sakmann, B. (1995) A look at membrane patches with a scanning force microscope. Biophys. J. 68, 1687–1693.PubMedCrossRefGoogle Scholar
  80. 80.
    Mosbacher, J., Haberle, W., and Horber, J. K. (1996) Studying membranes with scanning force microscopy and patch-clamp. J. Vac. Sci. Technol. B 14, 1449–1452.CrossRefGoogle Scholar
  81. 81.
    Larmer, J., Schneider, S. W., Danker, T., Schwab, A., and Oberleithner, H. (1997) Imaging excised apical plasma membrane patches of MDCK cells in physiological conditions with atomic force microscopy. Pflugers Arch. Eur. J. Physiol. 434, 254–260.CrossRefGoogle Scholar
  82. 82.
    Crowe, J. H. and Crowe, L. M. (1982) Induction of anhydrobiosis: membrane changes during drying. Cryobiology 19, 317–328.PubMedCrossRefGoogle Scholar
  83. 83.
    Danker, T., Mazzanti, M., Tonini, R., Rakowska, A., and Oberleithner, H. (1997) Using atomic force microscopy to investigate patch-clamped nuclear membrane. Cell Biol. Int. 21, 747–757.PubMedCrossRefGoogle Scholar
  84. 84.
    Bustamante, J. O. (1994) Nuclear electrophysiology. J. Membr. Biol. 138, 105–112.PubMedGoogle Scholar
  85. 85.
    Mosbacher, J., Langer, M., Horber, H., and Sachs, F. (1998) Voltage-dependent membrane displacements measure by atomic force microscopy. J. Gen. Physiol. 111, 65–74.PubMedCrossRefGoogle Scholar
  86. 86.
    Petrov, A. G. (1999) Lyotropic State of Matter: Molecular Physics and Living Matter Physics. Gordon & Breach Publishing Group, Amsterdam.Google Scholar
  87. 87.
    Todorov, A. T., Petrov, A. G., and Fendler, J. H. (1994) 1st observation of the converse flexoelectric effect in bilayer-lipid membranes. J. Phys. Chem. 98, 3076–3079.CrossRefGoogle Scholar
  88. 88.
    Todorov, A. T., Petrov, A. G., and Fendler, J. H. (1994) Flexoelectricity of charged and polar bilayer-lipid membranes studied by stroboscopic interferometry. Langmuir 10, 2344–2350.CrossRefGoogle Scholar
  89. 89.
    Petrov, A. G., Ramsey, R. L., and Usherwood, P. N. (1989) Curvature-electric effects in artificial and natural membranes studied using patch-clamp techniques. Eur. Biophys. J. 17, 13–17.PubMedCrossRefGoogle Scholar
  90. 90.
    Petrov, A. G., Miller, B. A., Hristova, K., and Usherwood, P. N. (1993) Flexoelectric effects in model and native membranes containing ion channels. Eur. Biophys. J. 22, 289–300.PubMedGoogle Scholar
  91. 91.
    Iwamoto, H., Czajkowsky, D. M., Cover, T. L., Szabo, G., and Shao, Z. (1999) VacA from Helicobacter pylori: a hexameric chloride channel. FEBS Lett. 450, 101–104.PubMedCrossRefGoogle Scholar
  92. 92.
    Bett, G. C. L. and Sachs, F. (2000) Activation and inactivation of mechanosensitive currents in the chick heart. J. Membr. Biol. 173, 237–254.PubMedCrossRefGoogle Scholar
  93. 93.
    Langer, M. G., Offner, W., Wittmann, H., Flosser, H., Schaar, H., Haberle, W., et al. (1997) A scanning force microscope for simultaneous force and patchclamp measurements on living cell tissues. Rev. Sci. Instr. 68, 2583–2590.CrossRefGoogle Scholar
  94. 94.
    Snyder, K., Besch, S. D., Zhang, P. C., and Sachs, F. (2000) Hardware and software modifications of the Quesant AFM for use in biology. In press.Google Scholar
  95. 95.
    Sachs, F. (1995) A low drift micropipette holder. Eur. J. Physiol. 429, 434–435.CrossRefGoogle Scholar
  96. 96.
    Snyder, K. V., Kreigstein, A. and Sachs, F. (1999) A convenient electrode holder for glass pipettes to stabilize electrode potentials. Eur. J. Physiol. 438, 405–411.CrossRefGoogle Scholar
  97. 97.
    Beyder, A., Snyder, K. V., and Sachs, F. (2000) New AFM cantilever for low force applications in liquids. In press.Google Scholar
  98. 98.
    Ashmore, J. F. (1987) A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J. Physiol. (Lond.) 388, 323–347.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Kenneth Snyder
    • 1
  • Ping C. Zhang
    • 2
  • Frederick Sachs
    • 2
  1. 1.School of Medicine and Biomedical SciencesSUNY BuffaloBuffalo
  2. 2.Department of Biophysical SciencesSUNY BuffaloBuffalo

Personalised recommendations