Advertisement

GABAA Receptors

Autoradiographic Localization of Different Ligand Sites and Identification of Subtypes of the Benzodiazepine Binding Site
  • Cyrille Sur
  • John Atack
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

GABA is generally accepted as the major inhibitory neurotransmitter within the vertebrate brain. Pharmacologically, the responses to GABA were initially characterized in terms of their sensitivity to a variety of agonists and antagonists. Thus, fast, ion channel-mediated effects that can be blocked by bicuculline, SR 95531 (both of which act at the GABA binding site), and picrotoxin and stimulated by GABA, muscimol, and isoguvacine, are mediated by GABAA receptors. On the other hand, bicuculline-insensitive effects which are stimulated by GABA and baclofen and inhibited by phaclofen, are mediated by G-protein linked, metabotropic GABAB receptors. In addition, a third type of GABA receptor, the so-called GABAC receptor, has been identified on the basis of its bicuculline and baclofen insensitivity (1). In the present chapter, we will concentrate on the autoradiographic identification of bicuculline-sensitive GABAA receptors.

Keywords

GABAA Receptor Globus Pallidus Granule Cell Layer Pregnenolone Sulfate GABAA Receptor Subtype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

REFERENCES

  1. 1.
    Barnard, E. A., Skolnick, P., Olsen, R. W., Mohler, H., Sieghart, W., Biggio, G., et al. (1992) International Union of Pharmacology. XV. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol. Rev. 50, 291–313.Google Scholar
  2. 2.
    Sieghart, W. (1995) Structure and pharmacology of γ-aminobutyric acidA receptor subtypes. Pharmacol. Rev. 47, 181–234.PubMedGoogle Scholar
  3. 3.
    Bonnert, T. P., McKernan, R. M., Farrar, S., LeBourdelles, B., Heavens, R. P., Smith, D. W., et al. (1999) h, a novel γ-aminobutyric acid type A receptor subunit. Proc. Natl. Acad. Sci. USA 96, 9891–9896.PubMedCrossRefGoogle Scholar
  4. 4.
    McKernan, R. M. and Whiting, P. J. (1996) Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci. 19, 139–143.PubMedCrossRefGoogle Scholar
  5. 5.
    Tretter, V., Ehya, N., Fuchs, K., and Sieghart, W. (1997) Stoichiometry and assembly of a recombinant GABAA receptor subtype. J. Neurosci. 17, 2728–2737.PubMedGoogle Scholar
  6. 6.
    Luddens, H., Pritchett, D. B., Kohler, M., Killisch, K., Monyer, H., Sprengel, R., and Seeburg, P. H. (1990) Cerebellar GABAA receptor selective for a behavioural alcohol antagonist. Nature (Lond.) 346, 648–651.CrossRefGoogle Scholar
  7. 7.
    Korpi, E. R. and Luddens, H. (1993) Regional γ-aminobutyric acid sensitivity of t-butylbicyclophosphoro[35S]thionate binding depends on γ-aminobutyric acidA receptor subunit. Mol. Pharmacol. 44, 87–92.PubMedGoogle Scholar
  8. 8.
    Olsen, R. W., McCabe, R. T., and Wamsley, J. K. (1990) GABAA receptor subtypes: autoradiographic comparison of GABA, benzodiazepine, and convulsant binding sites in the rat central nervous system. J. Chem. Neuroanat. 3, 59–76.PubMedGoogle Scholar
  9. 9.
    Ebert, B., Wafford, K. A., Whiting, P. J., Krogsgaard-Larsen, P., and Kemp, J. A. (1994) Molecular pharmacology of γ-aminobutyric acid type A receptor agonists and partial agonists in oocytes injected with differentα, β and γ receptor subunit combinations. Mol. Pharmacol. 46, 957–963.PubMedGoogle Scholar
  10. 10.
    Sakurai, S. Y., Kume, A., Burdette, D. E., and Albin, R. L. (1994) Quantitative autoradiography of [3H]t-butylbicycloorthobenzoate binding to the γ-aminobutyric acid receptorA complex. J. Pharmacol. Exp. Ther. 270, 362–370.PubMedGoogle Scholar
  11. 11.
    Wingrove, P. B., Wafford, K. A., Bain, C., and Whiting, P. J. (1994) The modulatory action of loreclezole at the γ-aminobutyric acid type A receptor is determined by a single amino acid in the β2-and β3-subunit. Proc. Natl. Acad. Sci. USA 91, 4569–4573.PubMedCrossRefGoogle Scholar
  12. 12.
    Bristow, D. R. and Martin, I. L. (1988) Light microscopic autoradiographic localisation in rat brain of the binding sites for the GABAA receptor antagonist [3H]SR 95531: comparison with the [3H]GABAinA receptor distribution. Eur. J. Pharmacol. 148, 283–288.PubMedCrossRefGoogle Scholar
  13. 13.
    Bowery, N. G., Hudson, A. L., and Price, G. W. (1987) GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 20, 365–383.PubMedCrossRefGoogle Scholar
  14. 14.
    Palacios, J. M., Wamsley, J. K., and Kuhar, M. J. (1981) High affinity GABA receptors: autoradiographic localization. Brain Res. 222, 285–307.PubMedCrossRefGoogle Scholar
  15. 15.
    Olsen, R. W., Snowhill, E. W., and Wamsley, J. K. (1984) Autoradiographic localization of low affinity GABA receptors with [3H]bicuculline methochloride. Eur. J. Pharmacol. 99, 247,248.CrossRefGoogle Scholar
  16. 16.
    Luque, J. M., Erat, R., Kettler, R., Cesura, A., Da Prada, M., and Richards, J. G. (1994) Radioautographic evidence that the GABAαA receptor antagonist SR 95531 is a substrate inhibitor of MAO-A in the rat and human locus coeruleus. Eur. J. Neurosci. 6, 1038–1049.PubMedCrossRefGoogle Scholar
  17. 17.
    Wamsley, J. K., Gehlert, D. R., and Olsen, R. W. (1986) The benzodiazepine/ barbiturate-sensitive convulsant/GABA receptor/chloride ionophore complex: autoradiographic localization of individual components, in Benzodiazepine/ GABA Receptors and Chloride Channels: Structural and Functional Properties (Olsen, R. W. and Venter, J. C., eds.), Liss, New York, pp. 299–313.Google Scholar
  18. 18.
    Palacios, J. M., Young, W. S., and Kuhar, M. J. (1980) Autoradiographic localization of γ-aminobutyric acid (GABA) receptors in the rat cerebellum. Proc. Natl. Acad. Sci. USA 77, 670–674.PubMedCrossRefGoogle Scholar
  19. 19.
    Kume, A. and Albin, R. L. (1994) Quantitative autoradiography of 4−ethynyl-4-n-[2,3-3H2]propylbicycloorthobenzoate binding to the GABAA receptor complex. Eur. J. Pharmacol. 263, 163–173.PubMedCrossRefGoogle Scholar
  20. 20.
    Niddam, R., Dubois, A., Scatton, B., Arbilla, S., and Langer, S. Z. (1987) Autoradiographic localization of [3H]zolpidem binding sites in the rat CNS: comparison with the distribution of [3H]flunitrazepam binding sites. J. Neurochem. 49, 890–899.PubMedCrossRefGoogle Scholar
  21. 21.
    Quirk, K., Blurton, S., Fletcher, S., Leeson, P., Tang, F., Mellilo, D., et al. (1996) [3H]L-655,708, a novel ligand selective for the benzodiazepine site of GABAA receptors which contain the α5 subunit. Neuropharmacology 35, 1331–1335.PubMedCrossRefGoogle Scholar
  22. 22.
    Sur, C., Fresu, L., Howell, O., McKernan, R. M., and Atack, J. R. (1999) autoradiographic localization of α5 subunit-containing GABAA receptors in rat brain. Brain Res. 822, 265–270.PubMedCrossRefGoogle Scholar
  23. 23.
    Turner, D. M., Sapp, D. W., and Olsen, R. W. (1991) The benzodiazepine/ alcohol antagonist Ro 15-4513: binding to a GABA receptor subtype that is insensitive to diazepam. J. Pharmacol. Exp. Ther. 257, 1236–1242.PubMedGoogle Scholar
  24. 24.
    Wisden, W., Laurie, D. J., Monyer, H., and Seeburg, P. H. (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J. Neurosci. 12, 1040–1062.PubMedGoogle Scholar
  25. 25.
    Laurie, D. J., Seeburg, P. H., and Wisden, W. (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J. Neurosci. 12, 1063–1076.PubMedGoogle Scholar
  26. 26.
    Fritschy, J. M. and Mohler, H. (1995) GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 359, 154–194.PubMedCrossRefGoogle Scholar
  27. 27.
    Jechlinger, M., Pelz, R., Tretter, V., Klausberger, T., and Sieghart, W. (1998) Subunit composition and quantitative importance of hetero-oligomeric receptors: GABAA receptors containing α6 subunits. J. Neurosci. 18, 2449–2457.PubMedGoogle Scholar
  28. 28.
    Benke, D., Michel, C., and Mohler, H. (1997) GABAA receptors containing the α4-subunit: prevalence, distribution, pharmacology, and subunit architecture in situ. J. Neurochem. 69, 806–814.PubMedCrossRefGoogle Scholar
  29. 29.
    Sur, C., Farrar, S., Kerby, J., Whiting, P. J., Atack, J. R., and McKernan, R. M. (1999a) Preferential coassembly of α4 and δ subunits of the γ-aminobutyric acidA receptor in rat thalamus. Mol. Pharmacol. 56, 110–115.PubMedGoogle Scholar
  30. 30.
    Sperk, G., Schwarzer, C., Tsunashima, K., Fuchs, K., and Sieghart, W. (1997) GABAA receptor subunits in the rat hippocampus: I. Immuncytochemical distribution of 13 subunits. Neuroscience 80, 987–1000.PubMedCrossRefGoogle Scholar
  31. 31.
    Houser, C. R., Olsen, R. W., Richards, J. G., and Mohler, H. (1988) Immunohistochemical localization of benzodiazepine/GABAA receptors in the human hippocampal formation. J. Neurosci. 8, 1370–1383.PubMedGoogle Scholar
  32. 32.
    Wamsley, J. K., Longlet, L., Hunt, M. E. Mahan, D. R., and Alburges, M. E. (1993) Characterization of the binding and comparison of the distribution of benzodiazepine receptors labeled with [3H]diazepam and [3H]alprazolam. Neuropsychopharmacology 8, 305–314.PubMedGoogle Scholar
  33. 33.
    Yezuita, J. P., McCabe, R. T., Barnett, A., Iorio, L. C., and Wamsley, J. K. (1988) Use of the selective benzodiazepine-1 (BZ-1) ligand [3H]oxo-quazepam (SCH 15-725) to localize BZ-1 receptors in the rat brain. Neurosci. Lett., 88, 86–92.PubMedCrossRefGoogle Scholar
  34. 34.
    Sanger, D. J. and Depoortere, H. (1998) The pharmacology and mechanism of action of zolpidem. CNS Drug Rev. 4, 323–340.CrossRefGoogle Scholar
  35. 35.
    Skolnick, P., Hu, R. J., Cook, C. M., Hurt, S. D., Trometer, J. D., Liu, R., et al. (1997) [3H]RY 80: A high-affinity, selective ligand for α-aminobutyric acidA receptors containing alpha-5 subunits. J. Pharmacol. Exp. Ther. 283, 488–493.PubMedGoogle Scholar
  36. 36.
    Li, M., Szabo, A., and Rosenberg, H. C. (1999) Evaluation of alpha-5 subunit-containing GABAA receptors using selective ligands. Soc. Neurosci. Abstr. 25, 1482.Google Scholar
  37. 37.
    Fernández-López, M. A., Chinchetru, M. A., and Fernández, P. C. (1997) The autoradiographic perspective of central benzodiazepine receptors: a short review. Gen. Pharmacol. 29, 173–180.PubMedGoogle Scholar
  38. 38.
    Nguyen, Q., Sapp, D. W., VanNess, P. C., and Olsen, R. W. (1995) Modulation of GABAA receptor binding in human brain by neuroactive steroids: species and brain regional differences. Synapse 19, 77–87.PubMedCrossRefGoogle Scholar
  39. 39.
    Greenamyre, J. T., Penney, J. B., DÅmato, C. J., and Young, A. B. (1987) Dementia of the Alzheimer’s type: changes in hippocampal L-[3H]glutamate binding. J. Neurochem. 48, 543–551.PubMedCrossRefGoogle Scholar
  40. 40.
    Jansen, K. L. R., Faull, R. L. M., Dragunow, M., and Synek, B. L. (1990) Alzheimer’s disease: changes in hippocampal N-methyl-D-aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin and opiod receptors: an autoradiographic study. Neuroscience 39, 613–627.PubMedCrossRefGoogle Scholar
  41. 41.
    Howell, O., Atack, J., McKernan, R., and Sur, C. (1999) Mapping of the α5 subunit containing GABAA receptor in the human hippocampus and its preservation in Alzheimer∝ disease. Br. J. Pharmacol. 128, 292.Google Scholar
  42. 42.
    Benes, F. M., Khan, Y., Vincent, S. L., and Wickramasinghe, R. (1996) Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain. Synapse 22, 338–349.PubMedCrossRefGoogle Scholar
  43. 43.
    Hand, K. S. P., Baird, V. H., VanPaesschen, W., Koepp, M. J., Revesz, T., Thom, M., et al. (1997) Central benzodiazepine receptor autoradiography in hippocampal sclerosis. Br. J. Pharmacol. 122, 358–364.PubMedCrossRefGoogle Scholar
  44. 44.
    Clark, M., Massenburg, G. S., Weiss, S. R. B., and Post, R. M. (1994) Analysis of the hippocampal GABAA receptor system in kindled rats by autoradiographic and in situ hybridization techniques: contingent tolerance to carbamazepine. Mol. Brain Res. 26, 309–319.PubMedCrossRefGoogle Scholar
  45. 45.
    Nobrega, J. N., Richter, A., McIntyre-Burnham, W., and Loscher, W. (1995) alterations in the brain GABAA/benzodiazepine receptor-chloride ionophore complex in a genetic model of paroxysmal dystonia: a quantitative autoradiographic analysis. Neuroscience 64, 229–239.PubMedCrossRefGoogle Scholar
  46. 46.
    Pan, H. S., Penney, J. B., and Young, A. B. (1985) γ-aminobutyric acid and benzodiazepine receptor changes induced by unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. J. Neurochem. 45, 1396–1404.PubMedCrossRefGoogle Scholar
  47. 47.
    Gunther, U., Benson, J., Benke, D., Fritschy, J. M., Reyes, G., Knoflach, F., et al. (1995) Benzodiazepine-insensitive mice generated by targeted disruption of the γ2 subunit gene of γ-aminobutyric acid type A receptor. Proc. Natl. Acad. Sci. USA 92, 7749–7753.PubMedCrossRefGoogle Scholar
  48. 48.
    Makela, R., Uusi-Oukari, M., Homanics, G. E., Quinlan, J. J., Firestone, L. L., Wisden, W., and Korpi, E. R. (1997) Cerebellar g-aminobutyric acid type A receptors: pharmacological subtypes revealed by mutant mouse lines. Mol. Pharmacol. 52, 380–388.PubMedGoogle Scholar
  49. 49.
    Crestani, F., Lorez, M., Baer, K., Essrich, C., Benke, D., Laurent, J. P., et al. (1999) Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nature Neurosci. 2, 833–839.PubMedCrossRefGoogle Scholar
  50. 50.
    Whiting, P. J., McAllister, G., Vasilatis, D., Bonnert, T. P., Heavens, R. P., Smith, D. W., et al. (1997) Neuronally restricted RNA splicing regulates the expression of a novel GABAA receptor subunit conferring atypical functional properties. J. Neurosci. 17, 5027–5037.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Cyrille Sur
    • 1
  • John Atack
    • 1
  1. 1.Department of Biochemistry, Neuroscience Research CentreMerck Sharp and Dohme Research LaboratoriesEssexUK

Personalised recommendations