Atomic Force Microscopy of Reconstituted Ion Channels

  • Hoeon Kim
  • Hai Lin
  • Ratneshwar Lal
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Ion channels and receptors are specialized biomembrane structures that serve as the interface between opposing compartments (e.g., cytoplasm and extracellular region, cytoplasm and intravesicular region) and toward which most of the regulatory signals are directed. Molecular three-dimensional (3D) structure of channels and receptors are studied primarily by high-resolution imaging techniques, including electron microscopy, electron and Xray diffractions, and infra-red spectroscopy. These techniques provide insufficient information about the surfaces of channels and receptors, the very sites of molecular interactions with external perturbations, and are usually unsuitable for combining biochemical, electrophysiological, and molecular biological techniques for simultaneous structure-function analyses. An atomic force Microscope (AFM) (1) can image the 3D-surface structure of a wide variety of native biological specimens, including reconstituted channels and receptors, in an aqueous medium and with subnanometer resolution (for reviews, see refs. 2, 3, 4). An AFM can also manipulate surfaces with molecular precision, i.e., it can nanodissect, translocate, and reorganize molecules on surfaces. AFM imaging in the hydrated condition provides an opportunity for observing biochemical and physiological processes in real time at molecular level and thus can be used for direct molecular structure-function studies. 3D surface topography has been imaged for several ion channels, pumps, and receptors that were: 1) present in isolated native membranes, 2) reconstituted in artificial membrane or, 3) expressed in an appropriate expression system. The present chapter provides a brief summary of imaging molecular structure and function of reconstituted channels and receptors using AFM.


Atomic Force Microscope Atomic Force Microscope Imaging Bordetella Pertussis Molecular Resolution OmpF Porins 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Binnig, G., Quate, C. F., and Gerber, C. (1986) Atomic force microscope. Phys. Rev. Lett. 56, 930–933.PubMedCrossRefGoogle Scholar
  2. 2.
    Lal, R. and John, S. A. (1994) Biological application of atomic force microscopy. Am. J. Physiol. 266, C1–C21.PubMedGoogle Scholar
  3. 3.
    Lal, R. (1998) Imaging molecular structure of channels and receptors with an atomic force microscope. Scan. Microsc. 10, 81–96.Google Scholar
  4. 4.
    Yang, J. and Shao, Z. F. (1995) Recent advances in biological atomic force microscopy. Micron 26, 35–49.PubMedCrossRefGoogle Scholar
  5. 5.
    Ohnesorge, F. and Binnig, G. (1993) True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science 260, 1451–1456.PubMedCrossRefGoogle Scholar
  6. 6.
    Lal, R. and Yu, L. (1993) Molecular structure of cloned nicotinic AChR receptors expressed in xenopus oocyte as revealed by atomic force microscopy. Proc. Natl. Acad. Sci. USA 90, 7280–7284.PubMedCrossRefGoogle Scholar
  7. 7.
    Kordylewski, L., Saner, D., and Lal, R. (1994) Atomic force microscopy of freeze-fracture replicas of rat atrial tissue. J. Microscopy 173, 173–181.Google Scholar
  8. 8.
    Parbhu, A. N., Bryson, W. G., and Lal, R. (1999) Disulfide bonds in the outer layer of keratin fibers confer higher mechanical rigidity: correlative nanoindentation and elasticity measurement with an AFM. Biochemistry 38, 11,755–11,761.PubMedCrossRefGoogle Scholar
  9. 9.
    Han, W., Mou, J., Yang, J., and Shao, Z. F. (1995) Cryo atomic force microscopy: a new approach for biological imaging at high resolution. Biochemistry 34, 8216–8220.Google Scholar
  10. 10.
    Hillner, P. E., Walters, D. A., Lal, R., Hansma, H. G., and Hansma, P. K. (1995) Combined atomic force and confocal laser scanning microscope. J. Micro. Soc. Am. 1, 123–126.Google Scholar
  11. 11.
    Lal, R., John, S. A., Laird, D. W., and Arnsdorf, M. F. (1995) Heart gap junction preparations reveal hemiplaques by atomic force microscopy. Am. J. Physiol. 268, C968–C977.PubMedGoogle Scholar
  12. 12.
    Lal, R. and Proksch, R. A. (1997) Multimodal imaging with atomic force microscopy: combined atomic force, light fluorescence, and laser confocal microscopy and electrophysiological recordings of biological membranes. Int. J. Imaging Syst. Technol. 8, 293–300.CrossRefGoogle Scholar
  13. 13.
    Yang, J., Tamm, L., Tillack, T., and Shao, Z. F. (1993) New approach for atomic force microscopy of membrane proteins: imaging of cholera toxin. J. Mol. Biol. 229, 286–290.PubMedCrossRefGoogle Scholar
  14. 14.
    Karrasch, S., Dolder, M., Schabert, F., Ramsden, J., and Engel, E. (1993) Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution. Biophys. J. 65, 2437–2446.PubMedCrossRefGoogle Scholar
  15. 15.
    Mou, J., Yang, J., and Shao, Z. F. (1995) Atomic force microscopy of cholera toxin B-oligomers bound to bilayers of biologically relevant lipids. J. Mol. Biol. 248, 507–512.PubMedCrossRefGoogle Scholar
  16. 16.
    Kim, H., Garavito, M. J., and Lal, R. (2000) Atomic force microscopy of threedimensional crystal of membrane protein, OmpC porin. Colloids Surfaces B: Biointerfaces 19, 247–355.CrossRefGoogle Scholar
  17. 17.
    Czajkowsky, D. M., Iwamoto, H., Cover, T. L., and Shao, ZF. (1999) The vacuolating toxin from Helicobacter pylori forms hexameric pores in lipid bilayers at low pH. Proc. Natl. Acad. Sci. USA 96, 2001–2006.PubMedCrossRefGoogle Scholar
  18. 18.
    Rhee, S. K., Quist, A. P., and Lal, R. (1998) Amyloid beta protein (1-42) forms calcium permeable, Zn2+-sensitive channel. J. Biol. Chem. 273, 13,379–13,382.PubMedCrossRefGoogle Scholar
  19. 19.
    Lin, H., Zhu, Y. J., and Lal, R. (1999) Amyloid beta protein (1-40) forms calcium permeable, zinc-sensitive pores in reconstituted lipid vesicles. Biochemistry 38, 11,189–11,196.PubMedCrossRefGoogle Scholar
  20. 20.
    Lin, H., Alig, T, Zasazdinski, J., and Lal, R. (2000) Amyloid beta protein (1-42) (AβP) forms tetrameric pores in lipid bilayers: an atomic force microscopy study. Biophys. J. 78, 177A.CrossRefGoogle Scholar
  21. 21.
    Czajkowsky, D. M., Sheng, S., and Shao, Z. F. (1998) Staphylococcal α-hemolysin can form hexamers in phospholipid bilayers. J. Mol. Biol. 276, 325–330.PubMedCrossRefGoogle Scholar
  22. 22.
    Lal, R, Kim, H., Garavito, R. M., and Arnsdorf, M. F. (1993) Molecular resolution imaging of outer membrane channels reconstituted in an artificial bilayer. Am. J. Physiol. 265, C851–C856.PubMedGoogle Scholar
  23. 23.
    Schabert, F. A., Henn, C., and Engel, A. (1995) Native E. coli OmpF porin surfaces probed by atomic force microscopy. Science 268, 92–94.PubMedCrossRefGoogle Scholar
  24. 24.
    Scheuring, S., Ringler, P., Borgnia, M., Stahlberg, H., Muller, D. J., Agre, P., and Engel, A. (1999) High resolution AFM topographs of the Escherichia coli water channel aquaporin Z. EMBO J. 18, 4981–4987.PubMedCrossRefGoogle Scholar
  25. 25.
    Hoh, J., Lal, R., John, S. A., Revel, J.-P., and Arnsdorf, M. F. (1991) Atomic force microscopy and dissection of gap junctions. Science 253, 1405–1408.PubMedCrossRefGoogle Scholar
  26. 26.
    John, S. A., Saner, D. A., Pitts, J., Finbow, M., and Lal, R. (1997) Atomic force microscopy of arthropod gap junctions. J. Struct. Biol. 120, 22–31.PubMedCrossRefGoogle Scholar
  27. 27.
    Lacapere, J. J., Stokes, D. L., and Chatenay, D. (1992) Atomic force microscopy of 3-dimensional membrane-protein crystals — Ca-ATPase of sarcoplasmic reticulum. Biophys. J. 63, 303–308.PubMedCrossRefGoogle Scholar
  28. 28.
    Butt, H.-J., Seifert, K., Fendeler, K., and Bamberg, E. (1993) Characterizing solid supported membranes with the atomic force microscope. Biophys. J. 64, A14.Google Scholar
  29. 29.
    Dietz, P., Hansma, P. K., Herrmann, K.-H., Inacker, O., and Lehmann, H.-D. (1991) Atomic force microscopy of synthetic ultrafiltration membranes in air and under water. Ultramicroscopy 35, 155–159.CrossRefGoogle Scholar
  30. 30.
    Proksch, R. A., Lal, R., Hansma, P. K., Morse, D., and Stucky, G. (1996) Imaging the internal and external pore structures of membrane in fluid: tapping mode scanning ion conductance microscopy. Biophys. J. 71, 2155–2157.PubMedCrossRefGoogle Scholar
  31. 31.
    Hansma, P. K., Drake, B., Grigg, D., Prater, C. B., Yasher, F., Gurley, G., et al. (1994) A new, optical-lever based atomic force microscope. J. Appl. Phys. 76, 796–799.CrossRefGoogle Scholar
  32. 32.
    Toledo-crow, R., Yang, P., Chen, Y., and Vaez-Iravani, M. (1992) Near-field differential scanning optical microscope with atomic force regulation. Appl. Phys. Lett. 60, 2957–2959.CrossRefGoogle Scholar
  33. 33.
    Ruger, D., Yannoni, C. S., and Sidles, J. A. (1992) Mechanical detection of magnetic resonance. Nature 360, 563–566.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Hoeon Kim
    • 1
  • Hai Lin
    • 2
  • Ratneshwar Lal
    • 1
  1. 1.Neuroscience Research InstituteUniversity of CaliforniaSanta Barbara
  2. 2.Neuroscience Research Institute, Department of Molecular, Cellular and Developmental BiologyUniversity of CaliforniaSanta Barbara

Personalised recommendations