Skip to main content

Using Caged Compounds to Map Functional Neurotransmitter Receptors

  • Protocol
Ion Channel Localization

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

As amply demonstrated by each of the chapters of this volume, location is an integral part of the physiological function of ion channels. Neurotransmitter receptors may represent an extreme example of this important concept, because these receptors must be targeted—within an accuracy of nanometers—in order to detect the release of neurotransmitters from presynaptic terminals. However, it has been challenging to visualize the location of receptors that are within the plasma membrane, as opposed to being within transport vesicles or other intracellular sites. It has been even more challenging to examine the functional properties of selected populations of receptors on the plasma membrane. Here we describe experiments that allow the use of “caged” neurotransmitters for these purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  1. Mitchison, T. J. (1989) Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J. Cell Biol. 109, 637–652.

    Article  PubMed  CAS  Google Scholar 

  2. O’Neill, S. C., Mill, J. G., and Eisner, D. A. (1990) Local activation of contraction in isolated rat ventricular mlyocytes. Am. J. Physiol. 258, C1165–C1168.

    CAS  Google Scholar 

  3. Parker, L. and Yao, Y. (1991) Regenerative release of calcium from functionally discrete subcellular stores by inositol trisphosphate. Proc. R Soc. Lond. 246, 269–274.

    Article  CAS  Google Scholar 

  4. Callaway, E. M. and Katz, L. C. (1993) Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc. Natl. Acad. Sci. USA 88, 7661–7665.

    Article  Google Scholar 

  5. Wang, S. S.-H. and Augustine, G. J. (1995) Confocal imaging and local photolysis of caged compounds: dual probes of synaptic function. Neuron 15, 755–760.

    Article  PubMed  CAS  Google Scholar 

  6. Svoboda, K., Tank, D. W., and Denk W. (1996) Direct measurement of coupling between dendritic spines and shafts. Science 272, 716–719.

    Article  PubMed  CAS  Google Scholar 

  7. McCray, J. A. and Trentham, D. R. (1989) Properties and uses of photoreactive caged compounds. Ann. Rev. Biophys. Biophys. Chem. 18, 239–270.

    Article  CAS  Google Scholar 

  8. Adams, S. R. and Tsien, R. Y. (1993) Controlling cell chemistry with caged compounds. Ann. Rev. Physiol. 5S, 755–784.

    Article  Google Scholar 

  9. Hess, G. P., Niu, L., and Wieboldt, R. (1995) Determination of the chemical mechanism of neurotransmitter receptor-mediated reactions by rapid chemical kinetic methods. Ann. NY Acad. Sci. 757, 23–39.

    Article  PubMed  CAS  Google Scholar 

  10. Rapp, G. and Guth, K. (1988) A low cost high intensity flash device for photolysis experiments. Pflugers Arch. 411, 200–203.

    Article  PubMed  CAS  Google Scholar 

  11. Lester, H. A. and Nerbonne, J. M. (1982) Physiological and pharmacological manipulations with light flashes. Ann. Rev. Biophys. Bioeng. 11, 151–175.

    Article  CAS  Google Scholar 

  12. Pettit, D. L., Wang, S. S.-H., Gee, K. R., and Augustine, G. J. (1997) Chemical two-photon uncaging: a novel approach to optical mapping of glutamate receptors. Neuron 19, 465–469.

    Article  PubMed  CAS  Google Scholar 

  13. Goppert-Mayer, M. (1931) Ueber Elementarakte mit zwei Quantenspruengen. Ann. Phys. 9, 273.

    Article  CAS  Google Scholar 

  14. Denk, W. (1994) Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions. Proc. Natl. Acad. Sci. USA 91, 6629–6633.

    Article  PubMed  CAS  Google Scholar 

  15. Denk, W., Piston, D. W., and Webb, W. W. (1995) In Handbook of Biological Confocal Microscopy, 2d ed. (Pawley, J. B., ed.), Plenum, New York, pp. 445–458.

    Google Scholar 

  16. Wieboldt, R., Gee, K. R., Niu, L., Ramesh, D., Carpenter, B. K., and Hess, G. P. (1994) Photolabile precursors of glutamate: synthesis, photochemical properties, and activation of glutamate receptors on a microsecond time scale. Proc. Natl. Acad. Sci. USA 91, 8752–8756.

    Article  PubMed  CAS  Google Scholar 

  17. Hausser, M. and Roth, A. (1997) Dendritic and somatic glutamate receptor channels in rat cerebellar Purkinje cells. J. Physiol. 501, 77–95.

    Article  PubMed  Google Scholar 

  18. Pettit, D. L. and Augustine, G. J. (2000) Topology of functional neurotransmitter receptors on dendrites of hippocampal neurons. J. Neurophysiol. 84, 28–38.

    PubMed  CAS  Google Scholar 

  19. Wang, S. S.-H., Khiroug, L., and Augustine, G. J. (2000) Postsynaptic spread of cerebellar long-term depression revealed with chemical two-photon uncaging. Proc. Natl. Acad. Sci. USA. 97, 8635–8640.

    Article  PubMed  CAS  Google Scholar 

  20. Otis, T. S., Kavanaugh, M. P., and Jahr, C. E. (1997) Postsynaptic glutamate transport at the climbing fiber-Purkinje cell synapse. Science 277, 1515–1518.

    Article  PubMed  CAS  Google Scholar 

  21. Sik, A., Penttonen, M., Ylinen, A., and Buzsaki, G. (1995) Hippocampal CA1 interneurons: An in vivo intracellular labeling study. J. Neurosci. 15, 6651–6665.

    PubMed  CAS  Google Scholar 

  22. Acsady, L., Gorcs, T. J., and Freund, T. F. (1996) Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus. Neuroscience 73, 317–334.

    Article  PubMed  CAS  Google Scholar 

  23. Cobb, S. R., Halasy, K., Vida, I., Nyiri, G., Tamas, G., Bubl, E. H., and Somogyi, P. (1997) Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus. Neuroscience 79, 629–648.

    Article  PubMed  CAS  Google Scholar 

  24. Craig, A. M., Blackstone, C. D., Huganir, R. L., and Banker, G. (1994) Selective clustering of glutamate and gamma-aminobutyric acid receptors opposite terminals releasing the corresponding neurotransmitters. Proc. Natl. Acad. Sci. USA 91, 12,373–12,377.

    Article  PubMed  CAS  Google Scholar 

  25. Mammen, A. L., Huganir, R. L., and O’Brien, R. J. (1997) Redistribution and stabilization of cell surface glutamate receptors during synapse formation. J. Neurosci. 17, 7351–7358.

    PubMed  CAS  Google Scholar 

  26. Baude, A., Nusser, Z., Molnar, E., McIlhinney, A. J., and Somogyi, P. (1995) High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and nonsynaptic sites in rat hippocampus. Neuroscience 69, 1031–1055.

    Article  PubMed  CAS  Google Scholar 

  27. Dodt, H. U., Frick A., Kampe, K., and Zieglgansberger, W. (1998) NMDA and AMPA receptors on neocrotical neurons are differentially distributed. Eur. J. Neurosci. 10, 3351–3357.

    Article  PubMed  CAS  Google Scholar 

  28. Magee, J. C. and Johnston, D. (1995a) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268, 301–304.

    Article  PubMed  CAS  Google Scholar 

  29. Magee, J. C. and Johnston, D. (1995b) Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J. Physiol. 481, 67–90.

    Google Scholar 

  30. Magee, J. C. (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18, 7613–7624.

    PubMed  CAS  Google Scholar 

  31. Spruston, N., Jonas, P., and Sakmann, B. (1995) Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. J. Physiol. 482, 325–352.

    PubMed  CAS  Google Scholar 

  32. Trommald, M., Jensen, V., and Anderson, P. (1995) Analysis of dendritic spines in rat CA1 pyramidal cells intracellularly filled with a fluorescent dye. J. Comp. Neurol. 353, 260–274.

    Article  PubMed  CAS  Google Scholar 

  33. Bannister, N. J. and Larkman, A. U. (1995) Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: II. Spine distributions. J. Comp. Neurol. 360, 161–171.

    Article  PubMed  CAS  Google Scholar 

  34. Harris, K. M., Jensen, F. E., and Tsao, B. (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CAT) postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci. 12, 2685–2705.

    PubMed  CAS  Google Scholar 

  35. Ishizuka, N., Cowan, W. M., and Amaral, D. G. (1995) A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. J. Comp. Neurol. 362, 17–45.

    Article  PubMed  CAS  Google Scholar 

  36. Jack, J. J., Redman, S. J., and Wong, K. (1981) The components of synaptic potentials evoked in cat spinal motorneurones by impulses in single group Ia afferents. J. Physiol. 321, 65–96.

    PubMed  CAS  Google Scholar 

  37. Andersen, P., Silfvenius, H., Sundberg, S. H., and Sveen, O. (1980) A comparison of distal and proximal dendritic synapses on CA1 pyramids in guinea-pig hippocampal slices in vitro. J. Physiol. 307, 273–299.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Pettit, D.L., Augustine, G.J. (2001). Using Caged Compounds to Map Functional Neurotransmitter Receptors. In: Lopatin, A.N., Nichols, C.G. (eds) Ion Channel Localization. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1385/1-59259-118-3:349

Download citation

  • DOI: https://doi.org/10.1385/1-59259-118-3:349

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-833-2

  • Online ISBN: 978-1-59259-118-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics