Advertisement

Using Caged Compounds to Map Functional Neurotransmitter Receptors

  • Diana L. Pettit
  • George J. Augustine
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

As amply demonstrated by each of the chapters of this volume, location is an integral part of the physiological function of ion channels. Neurotransmitter receptors may represent an extreme example of this important concept, because these receptors must be targeted—within an accuracy of nanometers—in order to detect the release of neurotransmitters from presynaptic terminals. However, it has been challenging to visualize the location of receptors that are within the plasma membrane, as opposed to being within transport vesicles or other intracellular sites. It has been even more challenging to examine the functional properties of selected populations of receptors on the plasma membrane. Here we describe experiments that allow the use of “caged” neurotransmitters for these purposes.

Keywords

Pyramidal Neuron Pyramidal Cell Axial Resolution Hippocampal Pyramidal Neuron Basal Dendrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

REFERENCES

  1. 1.
    Mitchison, T. J. (1989) Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J. Cell Biol. 109, 637–652.PubMedCrossRefGoogle Scholar
  2. 2.
    O’Neill, S. C., Mill, J. G., and Eisner, D. A. (1990) Local activation of contraction in isolated rat ventricular mlyocytes. Am. J. Physiol. 258, C1165–C1168.Google Scholar
  3. 3.
    Parker, L. and Yao, Y. (1991) Regenerative release of calcium from functionally discrete subcellular stores by inositol trisphosphate. Proc. R Soc. Lond. 246, 269–274.CrossRefGoogle Scholar
  4. 4.
    Callaway, E. M. and Katz, L. C. (1993) Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc. Natl. Acad. Sci. USA 88, 7661–7665.CrossRefGoogle Scholar
  5. 5.
    Wang, S. S.-H. and Augustine, G. J. (1995) Confocal imaging and local photolysis of caged compounds: dual probes of synaptic function. Neuron 15, 755–760.PubMedCrossRefGoogle Scholar
  6. 6.
    Svoboda, K., Tank, D. W., and Denk W. (1996) Direct measurement of coupling between dendritic spines and shafts. Science 272, 716–719.PubMedCrossRefGoogle Scholar
  7. 7.
    McCray, J. A. and Trentham, D. R. (1989) Properties and uses of photoreactive caged compounds. Ann. Rev. Biophys. Biophys. Chem. 18, 239–270.CrossRefGoogle Scholar
  8. 8.
    Adams, S. R. and Tsien, R. Y. (1993) Controlling cell chemistry with caged compounds. Ann. Rev. Physiol. 5S, 755–784.CrossRefGoogle Scholar
  9. 9.
    Hess, G. P., Niu, L., and Wieboldt, R. (1995) Determination of the chemical mechanism of neurotransmitter receptor-mediated reactions by rapid chemical kinetic methods. Ann. NY Acad. Sci. 757, 23–39.PubMedCrossRefGoogle Scholar
  10. 10.
    Rapp, G. and Guth, K. (1988) A low cost high intensity flash device for photolysis experiments. Pflugers Arch. 411, 200–203.PubMedCrossRefGoogle Scholar
  11. 11.
    Lester, H. A. and Nerbonne, J. M. (1982) Physiological and pharmacological manipulations with light flashes. Ann. Rev. Biophys. Bioeng. 11, 151–175.CrossRefGoogle Scholar
  12. 12.
    Pettit, D. L., Wang, S. S.-H., Gee, K. R., and Augustine, G. J. (1997) Chemical two-photon uncaging: a novel approach to optical mapping of glutamate receptors. Neuron 19, 465–469.PubMedCrossRefGoogle Scholar
  13. 13.
    Goppert-Mayer, M. (1931) Ueber Elementarakte mit zwei Quantenspruengen. Ann. Phys. 9, 273.CrossRefGoogle Scholar
  14. 14.
    Denk, W. (1994) Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions. Proc. Natl. Acad. Sci. USA 91, 6629–6633.PubMedCrossRefGoogle Scholar
  15. 15.
    Denk, W., Piston, D. W., and Webb, W. W. (1995) In Handbook of Biological Confocal Microscopy, 2d ed. (Pawley, J. B., ed.), Plenum, New York, pp. 445–458.Google Scholar
  16. 16.
    Wieboldt, R., Gee, K. R., Niu, L., Ramesh, D., Carpenter, B. K., and Hess, G. P. (1994) Photolabile precursors of glutamate: synthesis, photochemical properties, and activation of glutamate receptors on a microsecond time scale. Proc. Natl. Acad. Sci. USA 91, 8752–8756.PubMedCrossRefGoogle Scholar
  17. 17.
    Hausser, M. and Roth, A. (1997) Dendritic and somatic glutamate receptor channels in rat cerebellar Purkinje cells. J. Physiol. 501, 77–95.PubMedCrossRefGoogle Scholar
  18. 18.
    Pettit, D. L. and Augustine, G. J. (2000) Topology of functional neurotransmitter receptors on dendrites of hippocampal neurons. J. Neurophysiol. 84, 28–38.PubMedGoogle Scholar
  19. 19.
    Wang, S. S.-H., Khiroug, L., and Augustine, G. J. (2000) Postsynaptic spread of cerebellar long-term depression revealed with chemical two-photon uncaging. Proc. Natl. Acad. Sci. USA. 97, 8635–8640.PubMedCrossRefGoogle Scholar
  20. 20.
    Otis, T. S., Kavanaugh, M. P., and Jahr, C. E. (1997) Postsynaptic glutamate transport at the climbing fiber-Purkinje cell synapse. Science 277, 1515–1518.PubMedCrossRefGoogle Scholar
  21. 21.
    Sik, A., Penttonen, M., Ylinen, A., and Buzsaki, G. (1995) Hippocampal CA1 interneurons: An in vivo intracellular labeling study. J. Neurosci. 15, 6651–6665.PubMedGoogle Scholar
  22. 22.
    Acsady, L., Gorcs, T. J., and Freund, T. F. (1996) Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus. Neuroscience 73, 317–334.PubMedCrossRefGoogle Scholar
  23. 23.
    Cobb, S. R., Halasy, K., Vida, I., Nyiri, G., Tamas, G., Bubl, E. H., and Somogyi, P. (1997) Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus. Neuroscience 79, 629–648.PubMedCrossRefGoogle Scholar
  24. 24.
    Craig, A. M., Blackstone, C. D., Huganir, R. L., and Banker, G. (1994) Selective clustering of glutamate and gamma-aminobutyric acid receptors opposite terminals releasing the corresponding neurotransmitters. Proc. Natl. Acad. Sci. USA 91, 12,373–12,377.PubMedCrossRefGoogle Scholar
  25. 25.
    Mammen, A. L., Huganir, R. L., and O’Brien, R. J. (1997) Redistribution and stabilization of cell surface glutamate receptors during synapse formation. J. Neurosci. 17, 7351–7358.PubMedGoogle Scholar
  26. 26.
    Baude, A., Nusser, Z., Molnar, E., McIlhinney, A. J., and Somogyi, P. (1995) High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and nonsynaptic sites in rat hippocampus. Neuroscience 69, 1031–1055.PubMedCrossRefGoogle Scholar
  27. 27.
    Dodt, H. U., Frick A., Kampe, K., and Zieglgansberger, W. (1998) NMDA and AMPA receptors on neocrotical neurons are differentially distributed. Eur. J. Neurosci. 10, 3351–3357.PubMedCrossRefGoogle Scholar
  28. 28.
    Magee, J. C. and Johnston, D. (1995a) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268, 301–304.PubMedCrossRefGoogle Scholar
  29. 29.
    Magee, J. C. and Johnston, D. (1995b) Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J. Physiol. 481, 67–90.Google Scholar
  30. 30.
    Magee, J. C. (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18, 7613–7624.PubMedGoogle Scholar
  31. 31.
    Spruston, N., Jonas, P., and Sakmann, B. (1995) Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. J. Physiol. 482, 325–352.PubMedGoogle Scholar
  32. 32.
    Trommald, M., Jensen, V., and Anderson, P. (1995) Analysis of dendritic spines in rat CA1 pyramidal cells intracellularly filled with a fluorescent dye. J. Comp. Neurol. 353, 260–274.PubMedCrossRefGoogle Scholar
  33. 33.
    Bannister, N. J. and Larkman, A. U. (1995) Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: II. Spine distributions. J. Comp. Neurol. 360, 161–171.PubMedCrossRefGoogle Scholar
  34. 34.
    Harris, K. M., Jensen, F. E., and Tsao, B. (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CAT) postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci. 12, 2685–2705.PubMedGoogle Scholar
  35. 35.
    Ishizuka, N., Cowan, W. M., and Amaral, D. G. (1995) A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. J. Comp. Neurol. 362, 17–45.PubMedCrossRefGoogle Scholar
  36. 36.
    Jack, J. J., Redman, S. J., and Wong, K. (1981) The components of synaptic potentials evoked in cat spinal motorneurones by impulses in single group Ia afferents. J. Physiol. 321, 65–96.PubMedGoogle Scholar
  37. 37.
    Andersen, P., Silfvenius, H., Sundberg, S. H., and Sveen, O. (1980) A comparison of distal and proximal dendritic synapses on CA1 pyramids in guinea-pig hippocampal slices in vitro. J. Physiol. 307, 273–299.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Diana L. Pettit
    • 1
  • George J. Augustine
    • 2
  1. 1.NIEHS-NIHResearch Triangle Park
  2. 2.Department of NeurobiologyDuke University Medical CenterDurham

Personalised recommendations