Delivering Ion Channels to Mammalian Cells by Membrane Fusion

  • David C. Johns
  • Uta C. Hoppe
  • Eduardo Marbán
  • Brian O’Rourke
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Ion channels in the plasma membrane play a critical role in cellular function. These proteins are the gatekeepers that control ion homeostasis and shape excitability. Excitable cells use a variety of different ion channels to fashion their hallmark electrical signal, the action potential. Advances in molecular electrophysiology have led to the identification of more ion-channel genes than there are identified membrane currents. This excess is particularly striking with potassium channels, where a wide diversity of genes is compounded by variable levels of hetero-multimerization, alternative splicing, and post-translational modification. The classical methods of studying the roles of each gene rely either on exogenous expression in frog oocytes or pharmacological manipulation of native currents 1). Although these techniques have yielded a wealth of information concerning ion channel structure and function, they have come up short in linking individual genes and their products to physiology and disease.


Green Fluorescent Protein Cell Fusion Action Potential Duration Stable Cell Line Early Repolarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hille, B. (1992) Ionic Channels of Excitable Membranes, 2nd ed. Sinauer Associates, Sunderland, Mass.Google Scholar
  2. 2.
    Ackerman, M. J. and Clapham, D. E. (1997) Ion channels—basic science and clinical disease. N Engl J Med 336(22), 1575–1586.PubMedCrossRefGoogle Scholar
  3. 3.
    Hoffman, P. L. and Tabakoff, B. (1994) The role of the NMDA receptor in ethanol withdrawal. EXS 71, 61–70.PubMedGoogle Scholar
  4. 4.
    Nestler, E. J., Berhow, M. T., and Brodkin, E. S. (1996) Molecular mechanisms of drug addiction: adaptations in signal transduction pathways. Mol. Psychiatry 1(3), 190–199.PubMedGoogle Scholar
  5. 5.
    Sanguinetti, M. C., Jiang, C., Curran, M. E., and Keating, M. T. (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81(2), 299–307.PubMedCrossRefGoogle Scholar
  6. 6.
    Honig, P. K., Woosley, R. L., Zamani, K., Conner, D. P., and Cantilena, L. R., Jr. (1992) Changes in the pharmacokinetics and electrocardiographic pharmacodynamics of terfenadine with concomitant administration of erythromycin. Clin. Pharmacol. Ther. 52(3), 231–238.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhou, J. Y., Potts, J. F., Trimmer, J. S., Agnew, W. S., and Sigworth, F. J. (1991) Multiple gating modes and the effect of modulating factors on the microI sodium channel. Neuron 7(5), 775–785.PubMedCrossRefGoogle Scholar
  8. 8.
    Ukomadu, C., Zhou, J., Sigworth, F. J., and Agnew, W. S. (1992) muI Na+ channels expressed transiently in human embryonic kidney cells: biochemical and biophysical properties. Neuron 8(4), 663–676.PubMedCrossRefGoogle Scholar
  9. 9.
    Chang, S. Y., Satin, J., and Fozzard, H. A. (1996) Modal behavior of the mu 1 Na+ channel and effects of coexpression of the beta 1-subunit. Biophys. J. 70(6), 2581–2592.PubMedCrossRefGoogle Scholar
  10. 10.
    Snyders, D. J., Tamkun, M. M., and Bennett, P. B. (1993) A rapidly activating and slowly inactivating potassium channel cloned from human heart. Functional analysis after stable mammalian cell culture expression. J. Gen. Physiol. 101(4), 513–543.PubMedCrossRefGoogle Scholar
  11. 11.
    Ashen, M. D., O’Rourke, B., Kluge, K. A., Johns, D. C., and Tomaselli, G. F. (1995) Inward rectifier K+ channel from human heart and brain: cloning and stable expression in a human cell line. Am. J. Physiol. 268(1 Pt 2), H506–H511.PubMedGoogle Scholar
  12. 12.
    Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263(5148), 802–805.PubMedCrossRefGoogle Scholar
  13. 13.
    Marshall, J., Molloy, R., Moss, G. W., Howe, J. R., and Hughes, T. E. (1995) The jellyfish green fluorescent protein: a new tool for studying ion channel expression and function. Neuron 14(2), 211–215.PubMedCrossRefGoogle Scholar
  14. 14.
    Trouet, D., Nilius, B., Voets, T., Droogmans, G., and Eggermont, J. (1997) Use of a bicistronic Gfp-expression vector to characterise ion channels after transfection in mammalian cells. Pflugers Arch. Eur. J. Physiol. 434(5), 632–638.CrossRefGoogle Scholar
  15. 15.
    Kawashima, E., Estoppey, D., Virginio, C., Fahmi, D., Rees, S., Surprenant, A., and North, R. A. (1998) A novel and efficient method for the stable expression of heteromeric ion channels in mammalian cells. Receptors Channels 5(2), 53–60.PubMedGoogle Scholar
  16. 16.
    Johns, D. C., Marx, R., Mains, R. E., O’Rourke, B., and Marban, E. (1999) Inducible genetic suppression of neuronal excitability. J. Neurosci. 19(5), 1691–1697.PubMedGoogle Scholar
  17. 17.
    Johns, D. C., Nuss, H. B., and Marban, E. (1997) Suppression of neuronal and cardiac transient outward currents by viral gene transfer of dominant-negative Kv4. 2 constructs. J. Biol. Chem. 272(50), 31,598–31,3603.PubMedCrossRefGoogle Scholar
  18. 18.
    Johns, D. C., Nuss, H. B., Chiamvimonvat, N., Ramza, B. M., Marban, E., and Lawrence, J. H. (1995) Adenovirus-mediated expression of a voltage-gated potassium channel in vitro (rat cardiac myocytes) and in vivo (rat liver). J. Clin. Invest. 95, 1152–1158.CrossRefGoogle Scholar
  19. 19.
    Nuss, H. B., Johns, D. C., Kaab, S., Tomaselli, G. F., Kass, D., Lawrence, J. H., and Marban, E. (1996) Reversal of potassium channel deficiency in cells from failing hearts by adenoviral gene transfer: a prototype for gene therapy for disorders of cardiac excitability and contractility. Gene Ther. 3(10), 900–912.PubMedGoogle Scholar
  20. 20.
    Holt, J. R., Johns, D. C., Wang, S., Chen, Z. Y., Dunn, R. J., Marban, E., and Corey, D. P. (1999) Functional expression of exogenous proteins in mammalian sensory hair cells infected with adenoviral vectors [In Process Citation]. J. Neurophysiol. 81(4), 1881–1888.PubMedGoogle Scholar
  21. 21.
    Ehrengruber, M. U., Lanzrein, M., Xu, Y., Jasek, M. C., Kantor, D. B., Schuman, E. M., et al. (1998) Recombinant adenovirus-mediated expression in nervous system of genes coding for ion channels and other molecules involved in synaptic function. Methods Enzymol. 293, 483–503.PubMedCrossRefGoogle Scholar
  22. 22.
    Ehrengruber, M. U., Doupnik, C. A., Xu, Y., Garvey, J., Jasek, M. C., Lester, H. A., and Davidson, N. (1997) Activation of heteromeric G protein-gated inward rectifier channels overexpressed by adenovirus gene transfer inhibits the excitability of hippocampal neurons. Proc. Natl. Acad. Sci. USA 94, 7070–7075.PubMedCrossRefGoogle Scholar
  23. 23.
    Harris, H., Sidebottom, E., Grace, D. M., and Bramwell, M. E. (1969) The expression of genetic information: a study with hybrid animal cells. J. Cell Sci. 4(2), 499–525.PubMedGoogle Scholar
  24. 24.
    Frye, L. D. and Edidin, M. (1970) The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J. Cell Sci. 7(2), 319–335.PubMedGoogle Scholar
  25. 25.
    Okada, Y. (1993) Sendai virus-induced cell fusion. Methods Enzymol. 221, 18–41.PubMedCrossRefGoogle Scholar
  26. 26.
    Matsuda, R., Noro, N., and Ichimura, T. (1988) Myoblast-mediated fusioninjection: a new technique for introduction of macromolecules specifically into living skeletal muscle cells. Exp. Cell. Res. 176(2), 366–370.PubMedCrossRefGoogle Scholar
  27. 27.
    Uchida, T. (1988) Introduction of macromolecules into mammalian cells by cell fusion. Exp. Cell. Res. 178(1), 1–17.PubMedCrossRefGoogle Scholar
  28. 28.
    Goshima, K. and Wakabayashi, S. (1981) Inhibition of ouabain-induced arrhythmias of ouabain-sensitive myocardial cells (quail) by contact with ouabainresistant cells (mouse) and its mechanism. J. Mol. Cell Cardiol. 13(1), 75–92.PubMedCrossRefGoogle Scholar
  29. 29.
    Goshima, K., Kaneko, H., Wakabayashi, S., Masuda, A., and Matsui, Y. (1984) Beating activity of heterokaryons between myocardial and non-myocardial cells in culture. Exp. Cell. Res. 151(1), 148–159.PubMedCrossRefGoogle Scholar
  30. 30.
    Kaprielian, Z., Robinson, S. W., Fambrough, D. M., and Kessler, P. D. (1996) Movement of Ca(2+)-ATPase molecules within the sarcoplasmic/endoplasmic reticulum in skeletal muscle. J. Cell Sci. 109(Pt 10), 2529–2537.PubMedGoogle Scholar
  31. 31.
    Evans, S. M., Tai, L. J., Tan, V. P., Newton, C. B., and Chien, K. R. (1994) Heterokaryons of cardiac myocytes and fibroblasts reveal the lack of dominance of the cardiac muscle phenotype. Mol. Cell Biol. 14(6), 4269–4279.PubMedGoogle Scholar
  32. 32.
    Ahkong, Q. F., Desmazes, J. P., Georgescauld, D., and Lucy, J. A. (1987) Movements of fluorescent probes in the mechanism of cell fusion induced by poly(ethylene glycol). J. Cell Sci. 88(Pt 3), 389–398.PubMedGoogle Scholar
  33. 33.
    Deng, Y. P. and Storrie, B. (1988) Animal cell lysosomes rapidly exchange membrane proteins [published erratum appears in Proc. Natl. Acad. Sci. USA 86(9), 3214]. Proc. Natl. Acad. Sci. USA 85(11), 3860–23864.Google Scholar
  34. 34.
    Deng, Y. P., Griffiths, G., and Storrie, B. (1991) Comparative behavior of lysosomes and the pre-lysosome compartment (PLC) in in vivo cell fusion experiments. J. Cell Sci. 99(Pt 3), 571–582.PubMedGoogle Scholar
  35. 35.
    Deng, Y., DeCourcy, K., and Storrie, B. (1992) Intermixing of resident Golgi membrane proteins in rat-hamster polykaryons appears to depend on organelle coalescence. Eur. J. Cell Biol. 57(1), 1–11.PubMedGoogle Scholar
  36. 36.
    Hoppe, U. C., Johns, D. C., Marban, E., and O’Rourke, B. (1999) Manipulation of cellular excitability by cell fusion: effects of rapid introduction of transient outward K+ current on the guinea pig action potential. Circ. Res. 84(8), 964–972.PubMedGoogle Scholar
  37. 37.
    Johns, D. C., Nuss, H. B., and Marban, E. (1997) Suppression of neuronal and cardiac transient outward currents by viral gene transfer of dominant-negative Kv4. 2 constructs. J. Biol. Chem. 272(50), 31,598–31,603.PubMedCrossRefGoogle Scholar
  38. 38.
    Maniatis, T., Fritsch, E. F., and Sambrook, J. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  39. 39.
    Mitra, R. and Morad, M. (1986) Two types of calcium channels in guinea pig ventricular myocytes. Proc. Natl. Acad. Sci. USA 83(14), 5340–5344.PubMedCrossRefGoogle Scholar
  40. 40.
    Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391(2), 85–100.PubMedCrossRefGoogle Scholar
  41. 41.
    Neher, E. (1992) Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol. 207, 123–131.PubMedCrossRefGoogle Scholar
  42. 42.
    Näbauer, M., Beuckelmann, D. J., Uberfuhr, P., and Steinbeck, G. (1996) Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation 93(1), 168–177.PubMedGoogle Scholar
  43. 43.
    Wettwer, E., Amos, G. J., Posival, H., and Ravens, U. (1994) Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ. Res. 75(3), 473–482.PubMedGoogle Scholar
  44. 44.
    Anyukhovsky, E. P., Sosunov, E. A., and Rosen, M. R. (1996) Regional differences in electrophysiological properties of epicardium, midmyocardium, and endocardium, in vitro and in vivo correlations. Circulation 94(8), 1981–1988.PubMedGoogle Scholar
  45. 45.
    Liu, D. W., Gintant, G. A., and Antzelevitch, C. (1993) Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ. Res. 72(3), 671–687.PubMedGoogle Scholar
  46. 46.
    Lukas, A. and Antzelevitch, C. (1993) Differences in the electrophysiological response of canine ventricular epicardium and endocardium to ischemia. Role of the transient outward current. Circulation 88(6), 2903–2915.PubMedGoogle Scholar
  47. 47.
    Furukawa, T., Myerburg, R. J., Furukawa, N., Bassett, A. L., and Kimura, S. (1990) Differences in transient outward currents of feline endocardial and epicardial myocytes. Circ. Res. 67(5), 1287–1291.PubMedGoogle Scholar
  48. 48.
    Clark, R. B., Bouchard, R. A., Salinas-Stefanon, E., Sanchez-Chapula, J., and Giles, W. R. (1993) Heterogeneity of action potential waveforms and potassium currents in rat ventricle. Cardiovasc. Res. 27(10), 1795–1799.PubMedCrossRefGoogle Scholar
  49. 49.
    Fedida, D., Braun, A. P., and Giles, W. R. (1991) Alpha 1-adrenoceptors reduce background K+ current in rabbit ventricular myocytes. J. Physiol. (Lond.) 441, 673–684.Google Scholar
  50. 50.
    Beuckelmann, D. J., Näbauer, M., and Erdmann, E. (1993) Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ. Res. 73, 379–385.PubMedGoogle Scholar
  51. 51.
    Kääb, S., Nuss, H. B., Chiamvimonvat, N. O., Rourke, B., Pak, P. H., Kass, D. A., et al. (1996) Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ. Res. 78(2), 262–273.PubMedGoogle Scholar
  52. 52.
    Rozanski, G. J., Xu, Z., Zhang, K., and Patel, K. P.(1998) Altered K+ current of ventricular myocytes in rats with chronic myocardial infarction. Am. J. Physiol. 274(1 Pt 2), H259–H265.PubMedGoogle Scholar
  53. 53.
    Johns, D. C., Nuss, H. B., and Marban, E. (1997) Suppression of neuronal and cardiac transient outward currents by viral gene transfer of dominant-negative Kv4. 2 constructs. J. Biol. Chem. 272, 31,598–31,603.PubMedCrossRefGoogle Scholar
  54. 54.
    Barry, D. M., Xu, H., Schuessler, R. B., and Nerbonne, J. M. (1998) Functional knockout of the transient outward current, long-QT syndrome, and cardiac remodeling in mice expressing a dominant-negative Kv4 alpha subunit. Circ. Res. 83(5), 560–567.PubMedGoogle Scholar
  55. 55.
    Antzelevitch, C., Sicouri, S., Litovsky, S. H., Lukas, A., Krishnan, S. C., Di Diego, J. M., et al. (1991) Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circ. Res. 69(6), 1427–1449.PubMedGoogle Scholar
  56. 56.
    Weidmann, S. (1970) Electrical constants of trabecular muscle from mammalian heart. J. Physiol. (Lond.) 210(4), 1041–1054.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • David C. Johns
    • 1
  • Uta C. Hoppe
    • 2
  • Eduardo Marbán
    • 3
  • Brian O’Rourke
    • 2
  1. 1.Department of NeurosurgeryThe Johns Hopkin UniversityBaltimore
  2. 2.Department of Medicine IIIUniversity of CologneCologneGermany
  3. 3.Institute of Molecular CardiobiologyThe Johns Hopkins UniversityBaltimoreMD

Personalised recommendations