Advertisement

Mutant GFP- Based FRET Analysis of K+ Channel Organization

  • Elena N. Makhina
  • Colin G. Nichols
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

The fact that genetic incorporation of the green fluorescent protein GFP (1) into an ion channel does not usually abolish function of either protein (see Part 2 of this book) enables a researcher to localize an ion channel in a living cell at almost every step of its biogenesis. Indeed, by means of light and confocal microscopy ion channels have been observed through the major steps of the secretory pathway: ER-Golgi- TGN- plasma membrane (2, 3, 4). Single GFP tagging can be used to sort out various trafficking mutants (5) and to demonstrate ion channel interaction with other proteins (3,6, 7, 8). Potentially this approach allows the monitoring of ion channel trafficking and turnover in real time. The advantage of such in vivo localization is partly compromised by the necessity of labeling and detecting a control protein specific for a given compartment-usually achieved by immunostaining followed by cell fixation. This complication was bypassed by the development of blue, cyan, yellow, red, and other mutant fluorescent proteins (BFP, CFP, YFP, and RFP, respectively), that make it possible to monitor two proteins labeled with optically distinguishable fluorescent tags almost simultaneously in vivo and localize one protein relative to another. Ion channel examples are absent for the moment, application for other proteins is reviewed in ref. 9. Such co-coloring allows attributing two proteins roughly to the same compartment but does not reveal their closer association owing to the limited spatial resolution of light microscopy.

Keywords

Fluorescence Resonance Energy Transfer KATP Channel Fluorescence Resonance Energy Transfer Efficiency Fluorescence Resonance Energy Transfer Signal Fluorescence Resonance Energy Transfer Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

REFERENCES

  1. 1.
    Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker of gene expression. Science 263, 802–805.PubMedCrossRefGoogle Scholar
  2. 2.
    Makhina, E. N. and Nichols, C. G. (1998) Independent trafficking of KATP channel subunits to the plasma membrane. J. Biol. Chem. 273, 3369–3374.PubMedCrossRefGoogle Scholar
  3. 3.
    John, S. A., Monck, J. R., Weiss, J. N., and Ribalet, B. (1998) The sulphonylurea receptor SUR1 regulates ATP-sensitive mouse Kir6. 2 K+ channels linked to the green fluorescent protein in human embryonic kidney cells (HEK 293). J. Physiol. 510, 333–345.PubMedCrossRefGoogle Scholar
  4. 4.
    Moyer, B. D., Loffing, J., Schwiebert, E. M., Loffing-Cueni, D, Halpin, P. A., Karlson, K. H., et al. (1998) Membrane trafficking of the cystic fibrosis gene product, cystic fibrosis transmembrane conductance regulator, tagged with green fluorescent protein in madin-darby canine kidney cells. J. Biol. Chem. 273, 2CrossRefGoogle Scholar
  5. 5.
    Moyer, B. D., Loffing-Cueni, D., Loffing, J., Reynolds, D., and Stanton, B. A. (1999) Butyrate increases apical membrane CFTR but reduces chloridesecretion in MDCK cells. Am. J. Physiol. 277, F271–F276.PubMedGoogle Scholar
  6. 6.
    Burke, N. A., Takimoto, K., Li, D., Han, W., Watkins, S. C., and Levitan, E. S. (1999) Distinct structural requirements for clustering and immobilization of K+ channels by PSD-95. J. Gen. Physiol. 113, 71–80.PubMedCrossRefGoogle Scholar
  7. 7.
    Chan, K. W., Sui, J. L., Vivaudou, M., and Logothetis, D. E. (1997) Specific regions of heteromeric subunits involved in enhancement of G protein-gated K+ channel activity. J. Biol. Chem. 272, 6548–6555.PubMedCrossRefGoogle Scholar
  8. 8.
    Arnold, D. B. and Clapham, D. E. (1999) Molecular determinants for subcellular localization of PSD-95 with an interacting K+ channel. Neuron 23, 149–157.PubMedCrossRefGoogle Scholar
  9. 9.
    Ellenberg, J., Lippincott-Schwartz, J., and Presley, J. F. (1999) Dual-colour imaging with GFP variants. Trends Cell Biol. 9, 52–56.PubMedCrossRefGoogle Scholar
  10. 10.
    Lakowicz, J. R. (1983) Principles of Fluorescence Spectroscopy. Plenum, New York, p. 0–496, monograpGoogle Scholar
  11. 11.
    Heim, R. and Tsien, R. (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182.PubMedCrossRefGoogle Scholar
  12. 12.
    Tsien, R. Y.(1998) The green fluorescent protein. Ann. Rev. Biochem. 67, 509–544.PubMedCrossRefGoogle Scholar
  13. 13.
    Periasamy, A. and Day, R. N. (1999) Vizualizing protein interactions in living cells using digitized GFP imaging and FRET microscopy. Methods Cell Biol. 58, 293–31PubMedCrossRefGoogle Scholar
  14. 14.
    Pollok, B. A. and Heim, R. (1999) Using GFP in FRET-based applications. Trends Cell Biol. 9, 57–60.PubMedCrossRefGoogle Scholar
  15. 15.
    Bastiaens, P. I. and Squire, A. (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol. 9, 48–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Weiss, S. (1999) Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1682.PubMedCrossRefGoogle Scholar
  17. 17.
    Mitra, R. D., Silva, C. M., and Youvan, D. C. (1996) Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein. Gene 173, 13–17.PubMedCrossRefGoogle Scholar
  18. 18.
    Romoser, V. A., Hinkle, P. M., and Persechini, A. (1997) Detection in living cells of Ca2+-dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulinbinding sequence. A new class of fluorescent indicators. J. Biol. Chem. 272, 13,270–13,274.PubMedCrossRefGoogle Scholar
  19. 19.
    Miyawaki, A., Llopis, J., Heim, R., McCaffery, J. M., Adams, J. A., Ikura, M., and Tsien, R. Y. (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887.PubMedCrossRefGoogle Scholar
  20. 20.
    Mahajan, N. P., Linder, K., Berry, G., Gordon, G. W., Heim, R., and Herman, B. (1998) Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nature Biotech. 16, 547–552.CrossRefGoogle Scholar
  21. 21.
    Overton, M. C. and Blumer, K. J. (2000) G protein coupled receptors function as oligomers in vivo. Curr. Biol. 10, 341–344.PubMedCrossRefGoogle Scholar
  22. 22.
    Pearce, LL, Gandley, R. E., Han, W., Wasserloos, K., Stitt, M., Kanai, A. J., et al. (2000) Role of metallothionein in nitric oxide signaling as revealed by a green fluorescent fusion protein. Proc. Natl. Acad. Sci. USA 97, 477–482.PubMedCrossRefGoogle Scholar
  23. 23.
    Nichols, C. G., Shyng, S.-L., Nestorowicz, A., Glaser, B., Clement, J. P. IV, Gonzales, G., et al. (1996) Adenosine diphosphate as an intracellular regulator of insulin secretion. Science 272, 1785–1787.PubMedCrossRefGoogle Scholar
  24. 24.
    Nestorowicz, A., Wilson, B. A., Schoor, K. P., Inoue, H., Glaser, B., Landau, H., et al. (1996) Mutations in the sulonylurea receptor gene are associated with familial hyperinsulinism in Ashkenazi Jews. Hum. Mol. Genetics 5, 1813–1822.CrossRefGoogle Scholar
  25. 25.
    Dunne, M. J., Kane, C., Shepherd, R. M., Sanchez, J. A., James, R. F., Johnson, P. R., et al. (1997) Familial persistent hyperinsulinemic hypoglycemia of infancy and mutations in the sulfonylurea receptor. N. Engl. J. Med. 336, 703–706.PubMedCrossRefGoogle Scholar
  26. 26.
    Koster, J. C., Marshall, B. A., Ensor, N., Corbett, J. A., and Nichols, C. G. (2000) Targeted overactivity of beta cell KATP channels induces profound neonatal diabetes. Cell 100, 645–654.PubMedCrossRefGoogle Scholar
  27. 27.
    Zerangue, N., Schwappach, B., Jan, Y. N., and Jan, L. Y.(1999) A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron. 22, 537–548.PubMedCrossRefGoogle Scholar
  28. 28.
    Sharma, N., Crane, A., Clement, J. P. IV, Gonzalez, G., Babenko, A. P., Bryan, J., and Aguilar-Bryan, L. (1999) The C terminus of SUR1 is required for trafficking of KATP channels. J. Biol. Chem. 274, 20,628–20,632.PubMedCrossRefGoogle Scholar
  29. 29.
    Shyng, S.-L. and Nichols, C. G. (1997) Octameric stoichiometry of the KATP channel complex. J. Gen. Physiol. 110, 655–664.PubMedCrossRefGoogle Scholar
  30. 30.
    Clement, J. P., Kunjilwar, K., Gonzalez, G., Schwanstecher, M., Panten, U., Aguilar-Bryan, L., and Bryan, J. (1997) Association and stoichiometry of K(ATP) channel subunits. Neuron 18, 827–838.PubMedCrossRefGoogle Scholar
  31. 31.
    Aguilar-Bryan, L., Nichols, C. G., Wechsler, S. W., Clement, J. P. IV, Boyd, A. E. III, et al. (1995) Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268, 423–426.PubMedCrossRefGoogle Scholar
  32. 32.
    Inagaki, N., Gonoi, T., Clement, J. P. IV, Namba, N., Inazawa, J., Gonzalez, G., et al. (1995) Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270, 1166–1170.PubMedCrossRefGoogle Scholar
  33. 33.
    Tucker, S. J., Gribble, F. M., Zhao, C., Trapp, S., and Ashcroft, F. M. (1997) Truncation of Kir6. 2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 387, 179–183.PubMedCrossRefGoogle Scholar
  34. 34.
    Ormo, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., and Remington, S. J. (1996) Crystal structure of the Aequorea victoria green fluorescent protein Science 273, 1392–1395.PubMedCrossRefGoogle Scholar
  35. 35.
    Siegel, M. S. and Isacoff, E. Y. (1997) A genetically encoded optical probe of membrane voltage. Neuron 19, 735–741.PubMedCrossRefGoogle Scholar
  36. 36.
    De Angelis, D. A., Miesenbock, G., Zemelman, B. V., and Rothman, J. E. (1998) PRIM: proximity imaging of green fluorescent protein-tagged, polypeptides. Proc. Natl. Acad. Sci. USA 95, 12,312–12,3PubMedCrossRefGoogle Scholar
  37. 37.
    Siemering, K. R., Golbik, R., Sever, R., and Haseloff, J. (1996) Mutations that suppress the thermosensitivity of green fluorescent protein. Curr. Biol. 6, 1653–1663.PubMedCrossRefGoogle Scholar
  38. 38.
    Kimata, Y., Iwaki, M., Lim, C. R., and Kohno, K. (1997) A novel mutation which enhances the fluorescence of green fluorescent protein at high temperatures. Biochem. Biophys. Res. Comm. 232, 69–PubMedCrossRefGoogle Scholar
  39. 39.
    Nichols, C. G. and Lopatin, A. N. (1993) Trypsin and alpha-chymotrypsin treatment abolishes glibenclamide sensitivity of KATP channels in rat ventricular myocytes. Pflugers Arch. 422, 617–619.PubMedCrossRefGoogle Scholar
  40. 40.
    Proks, P. and Ashcroft, F. M. (1993) Modification of K-ATP channels in pancreatic beta-cells by trypsin. Pflugers Arch. 424, 63–72. aPubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Elena N. Makhina
    • 1
  • Colin G. Nichols
    • 1
  1. 1.Department of Cell Biology and PhysiologyWashington University Medical SchoolSt. Louis

Personalised recommendations