Advertisement

Applications of Green Fluorescent Protein (GFP) Technology

Watching Ion Channel Biogenesis in Living Cells Using GFP Fusion Constructs
  • Scott A. John
  • James N. Weiss
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Things that go flash in the night are usually deep in the sea. Autofluorescent and bioluminescent proteins are found almost exclusively in the salt-water world. One notable exception is the glow-in-the-dark firefly—a result of bioluminescence from the protein called luciferase—in which a chemical reaction drives the process, unlike autofluorescence, which is driven by photons. The spectral characteristics of sea water, with its almost complete absorption of longer wavelength light h 479 nm, has resulted in a preponderance of light-making proteins that fluoresce or bioluminesce in wavelengths of blue or blue green (450-480 nm)

Keywords

Green Fluorescent Protein Cystic Fibrosis Transmembrane Conductance Regulator Xenopus Oocyte KATP Channel Green Fluorescent Protein Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G., and Cormier, M. J. (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233.PubMedCrossRefGoogle Scholar
  2. 2.
    Ormo, M., Cubitt, A. B., Kallio, K., Gross, L. A., and Tsien, R. Y. (1996) Crystal structure of the Aequorea Victoria green fluorescent protein. Science 273, 1392–1395.PubMedCrossRefGoogle Scholar
  3. 3.
    Yang, F., Moss, L. G., and Phillips, G. N. J. (1996) The molecular structure of green fluorescent protein. Nat. Biotechno. 14, 1246–1251.CrossRefGoogle Scholar
  4. 4.
    Patterson, G. H., Knobel, S. M., Sharif, W. D., Kain, S. R., and Piston, D. W. (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J 73, 2782–2790.PubMedCrossRefGoogle Scholar
  5. 5.
    Tsien, R. Y. (1998) The green fluorescent protein. Ann. Rev. Biochem. 67, 509–544.PubMedCrossRefGoogle Scholar
  6. 6.
    Matz, M. V., Frakov, A. F., Labas, Y. A., Savitsky, A. P., Zaraisky, A. G., Markelov, M. L., et al. (1999) Fluorescent proteins from non-bioluminescent anthoza species. Nat. Biotechnol. 17, 969–973.PubMedCrossRefGoogle Scholar
  7. 7.
    Oancea, E., Teruel, M. N., Quest, A. F., and Meyer, T. (1998) Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J. Cell Biol. 140, 485–498.PubMedCrossRefGoogle Scholar
  8. 8.
    Neuhuber, B., Gerster, U., Doring, F., Glossmann, H., Tanabe, T., and Flucher, B. E. (1998) Association of calcium channel alpha1S and beta1a subunits is required for the targeting of beta1a but not alpha1S into skeletal muscle triads. Proc. Natl. Acad. Sci. USA 95, 5015–5020.PubMedCrossRefGoogle Scholar
  9. 9.
    Miesenbock, G., De Angelis, D. A., and Rothman, J. E. (1998) Visualizing secretion and synaptic transmission with pH-sensitive green flourescent proteins. Nature 394, 192–195.PubMedCrossRefGoogle Scholar
  10. 10.
    Brock, R., Hamelers, I. H., and Jovin, T. M. (1999) Comparison of fixation protocols for adherent cultured cells applied to a GFP fusion protein of the epidermal growth factor receptor. Cytometry 35, 353–362.PubMedCrossRefGoogle Scholar
  11. 11.
    Satiat-Jeunemaitre, B., Boevink, P., and Hawes, C. (1999) Membrane trafficking in higher plant cells: GFP and antibodies, partners for probing the secretory pathway. Biochimie 81, 597–605.PubMedCrossRefGoogle Scholar
  12. 12.
    Sullivan, K. F. and Kay, S. A. (1999) Green fluorescent proteins, in Methods in Cell Biology, vol. 58. (Sullivan, K. F. and Kay, S. A., eds.), Academic, San Diego, CA, pp. xvii, 386.Google Scholar
  13. 13.
    Heim, R., Prasher, D. C., and Tsien, R. Y. (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91, 12,501–12,504.PubMedCrossRefGoogle Scholar
  14. 14.
    Ellenberg, J., Lippincott-Schwartz, J., and Presley, J. F. (1998) Two-color green fluorescent protein time-lapse imaging. Biotechniques 25, 838–842, 844–846.PubMedGoogle Scholar
  15. 15.
    Ellenberg, J., Lippincott-Schwartz, J., and Presley, J. F. (1999) Dual-colour imaging with GFP variants. Trends Cell Biol. 9, 52–56.PubMedCrossRefGoogle Scholar
  16. 16.
    De Giorgi, F., Ahmed, Z., Bastianutto, C., Brini, M., Jouaville, L. S., Marsault, R., et al. (1999) Targeting GFP to organelles. Methods Cell Biol. 58, 75–85.PubMedGoogle Scholar
  17. 17.
    Girotti, M. and Banting, G. (1996) TGN38-green fluorescent protein hybrid proteins expressed in stably transfected eukaryotic cells provide a tool for the real-time, in vivo study of membrane traffic pathways and suggest a possible role for ratTGN38. J. Cell Sci. 109, 2915–2926.PubMedGoogle Scholar
  18. 18.
    Miller, D. M., III, Desai, N. S., Hardin, D. C., Piston, D. W., Patterson, G. H., Fleenor, J., Xu, S., and Fire, A. (1999) Two-color GFP expression system for C. elegans. Biotechniques 26, 914–921.PubMedGoogle Scholar
  19. 19.
    Kozak, M. (1989) The scanning model for translation: an update. J. Cell Biol. 108, 229–241.PubMedCrossRefGoogle Scholar
  20. 20.
    Moyer, B. D., Loffing, J., Schwiebert, E. M., Loffing-Cueni, D., Halpin, P. A., Karlson, K. H., et al. (1998) Membrane trafficking of the cystic fibrosis gene product, cystic fibrosis transmembrane conductance regulator, tagged with green fluorescent protein in madin-darby canine kidney cells. J. Biol. Chem. 273, 21,759–21,768.PubMedCrossRefGoogle Scholar
  21. 21.
    He, T.-C., Zhou, S., Da Costa, L. T., Yu, J., Kinzler, K. W., and Vogelstein, B. (1998) A simplified system for genearating recombinat adenoviruses. Proc. Natl. Acad. Sci. USA 95, 2509–2514.PubMedCrossRefGoogle Scholar
  22. 22.
    Teruel, M. N. and Meyer, T. (1997) Electroporation-induced formation of individual calcium entry sites in the cell body and processes of adherent cells. Biophys. J. 73, 1785–1796.PubMedCrossRefGoogle Scholar
  23. 23.
    Arnold, D. B. and Clapham, D. E. (1999) Molecular determinants for subcellular localization of PSD-95 with an interacting K+ channel. Neuron 23, 149–157.PubMedCrossRefGoogle Scholar
  24. 24.
    Bueno, O. F., Robinson, L. C., Alvarez-Hernandez, X., and Leidenheimer, N. J. (1998) Functional characterization and visualization of a GABAA receptor-GFP chimera expressed in Xenopus oocytes. Mol. Brain Res. 59, 165–177.PubMedCrossRefGoogle Scholar
  25. 25.
    Meyer, E. and Fromherz, P. (1999) Ca2+ activation of hSlo K+ channel is suppressed by N-terminal GFP tag. Eur. J. Neurosci. 11, 1105–1108.PubMedCrossRefGoogle Scholar
  26. 26.
    Gustafson, C. E., Levine, S., Katsura, T., McLaughlin, M., Alexio, M. D., Tamarappoo, B. K., et al. (1998) Vasopressin regulated trafficking of a green flourescent protein-aquaporin 2 chimera in LLC-PK1 cells. Histochem. Cell Biol. 110, 377–386.PubMedCrossRefGoogle Scholar
  27. 27.
    Siegel, M. S. and Isacoff, E. Y. (1997) A genetically encoded optical probe of membrane voltage. Neuron 19, 735–741.PubMedCrossRefGoogle Scholar
  28. 28.
    Dopf, J. and Horiagon, T. M. (1996) Deletion mapping of the Aequorea victoria green fluorescent protein. Gene 173, 39–44.PubMedCrossRefGoogle Scholar
  29. 29.
    Biondi, R. M., Baehler, P. J., Reymond, C. D., and Véron, M. (1998). Random insertion of GFP into the cAMP-dependent protein kinase regulatory subunit from Dictyostelium discoideum. Nucleic Acids Res. 26, 4946–4952.PubMedCrossRefGoogle Scholar
  30. 30.
    Grabner, M., Dirksen, R. T., and Beam, K. G. (1998) Tagging with the green flourecent protein reveals a distinct subcellular distribution of L-type and non L-type Ca2+ channels expressed in dysgenic myotubes. Proc. Natl. Acad. Sci. USA 95, 1903–1908.PubMedCrossRefGoogle Scholar
  31. 31.
    John, S. A., Monck, J. R., Weiss, J. N., and Ribalet, B. (1998) The sulphonylurea receptor SUR1 regulates ATP-sensitive mouse Kir6. 2 K+ chan nels linked to the green fluorescent protein in human embryonic kidney cells (HEK 293). J. Physiol. 510, 333–345.PubMedCrossRefGoogle Scholar
  32. 32.
    Makhina, E. N., and Nichols, C. G. (1998) Independent trafficking of KATP channel subunits to the plasma membrane. J. Biol. Chem. 273, 3369–3374.PubMedCrossRefGoogle Scholar
  33. 33.
    Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K., and Pease, L. R. (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68.PubMedCrossRefGoogle Scholar
  34. 34.
    Zerangue, N., Schwappach, B., Jan, Y. N., and Jan, L. Y. (1999) A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 22, 537–548.PubMedCrossRefGoogle Scholar
  35. 35.
    Lu, T., Nguyen, B., Zhang, X., and Yang, J. (1999) Architecture of a K+ channel inner pore revealed by stoichiometric covalent modification. Neuron 22, 571–580.PubMedCrossRefGoogle Scholar
  36. 36.
    Costa, G. L. and Weiner, M. P. (1994) Protocols for cloning and analysis of blunt ended PCR-generated DNA fragments. PCR Methods Appl. 3, S95–S106.PubMedGoogle Scholar
  37. 37.
    Jordan, K., Solan, J. L., Dominguez, M., Sia, M., Hand, A., Lampe, P. D., and Laird, D. W. (1999) Trafficking, assembly, and function of a connexin43-green fluorescent protein chimera in live mammalian cells. Mol. Biol. Cell 10, 2033–2050.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Scott A. John
    • 1
  • James N. Weiss
    • 1
  1. 1.UCLA Cardiovascular Research LaboratoryUCLA School of MedicineLos Angeles

Personalised recommendations