Localization and Quantification of GFP-Tagged Ion Channels Expressed in Xenopus Oocytes

  • Tooraj Mirshahi
  • Diomedes E. Logothetis
  • Massimo Sassaroli
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


The green fluorescent protein (GFP) from the jellyfish Aequorea victoria has recently emerged as a very powerful tool in cell biology. Fused to the protein of interest, GFP serves as a marker for gene expression as well as protein localization in living cells. We have used GFP as a marker for ionchannel localization and expression in Xenopus oocytes. As with any study using heterologous expression of proteins, these studies should be interpreted in the biological context in which they are presented, considering the cell biology and physiology of the protein under study. Furthermore, there are potential artifacts using these techniques necessitating the use of stringent control experiments. Nevertheless, in our studies, this approach has proven extremely useful, as we hope to convey in the current chapter.


Green Fluorescent Protein Fluorescence Resonance Energy Transfer Xenopus Oocyte Green Fluorescent Protein Signal Vegetal Pole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Shimomura, O., Johnson, F. H., and Saiga, Y. (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol. 59, 223–239.CrossRefGoogle Scholar
  2. 2.
    Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G., and Cormier, M. J. (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2), 229–233.PubMedCrossRefGoogle Scholar
  3. 3.
    Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263(5148), 802–805.PubMedCrossRefGoogle Scholar
  4. 4.
    Tsien, R. Y. (1998) The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544.PubMedCrossRefGoogle Scholar
  5. 5.
    Chattoraj, M., King, B. A., Bublitz, G. U., and Boxer, S. G. (1996) Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc. Natl. Acad. Sci. USA 93(16), 8362–8367.PubMedCrossRefGoogle Scholar
  6. 6.
    Heim, R., Cubitt, A. B., and Tsien, R. Y. (1995) Improved green fluorescence. Nature 373(6516), 663, 664.PubMedCrossRefGoogle Scholar
  7. 7.
    Bueno, O. F., Robinson, L. C., Alvarez-Hernandez, X., and Leidenheimer, N. J. (1998) Functional characterization and visualization of a GABA-A receptor-GFP chimera expressed in Xenopus oocytes. Brain Res. Mol. Brain Res. 59(2), 165–177.PubMedCrossRefGoogle Scholar
  8. 8.
    Kim, E., Niethammer, M., Rothschild, A., Jan, Y. N., and Sheng, M. (1995) Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature 378(6552), 85–88.PubMedCrossRefGoogle Scholar
  9. 9.
    Kornau, H. C., Schenker, L. T., Kennedy, M. B. and Seeburg, P. H. (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269(5231), 1737–1740.PubMedCrossRefGoogle Scholar
  10. 10.
    Siegel, M. S. and Isacoff, E. Y. (1997) A genetically encoded optical probe of membrane voltage. Neuron 19(4), 735–741.PubMedCrossRefGoogle Scholar
  11. 11.
    Liman, E. R., Tytgat, J., and Hess, P. (1992) Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9(5), 861–871.PubMedCrossRefGoogle Scholar
  12. 12.
    Sui, J. L., Chan, K., Langan, M. N., Vivaudou, M., and Logothetis, D. E. (1999) G protein gated potassium channels. Adv. Second Messenger Phosphoprotein Res. 33, 179–201.PubMedGoogle Scholar
  13. 13.
    Stühmer, W. (1992) Electrophysiological recording from Xenopus oocytes. Methods Enzymol. 207, 319–339.PubMedCrossRefGoogle Scholar
  14. 14.
    Chan, K. W., Langan, M. N., Sui, J., Kozak, J. A., Pabon, A., Ladias, J. A. A., and Logothetis, D. E. (1996) A recombinant inwardly rectifying potassium channel coupled to GTP-binding proteins. J. Gen. Physiol. 107, 381–397.PubMedCrossRefGoogle Scholar
  15. 15.
    Lopatin, A. N., Makhina, E. N., and Nichols, C. G. (1998) A novel crystallization method for visualizing the membrane localization of potassium channels. Biophys. J. 74(5), 2159–2170.PubMedCrossRefGoogle Scholar
  16. 16.
    Johnson, G. D., Davidson, R. S., McNamee. K. C., Russell, G., Goodwin, D., and Holborow, E. J. (1982) Fading of immunofluorescence during microscopy: a study of the phenomenon and its remedy. J. Immunol. Methods. 55(2), 231–242.PubMedCrossRefGoogle Scholar
  17. 17.
    Hedin, K. E., Lim, N. F., and Clapham, D. E. (1996) Cloning of a Xenopus laevis inwardly rectifying K+ channel subunit that permits GIRK1 expression of IKACh currents in oocytes. Neuron 16(2), 423–429.PubMedCrossRefGoogle Scholar
  18. 18.
    Patterson, G. H., Knobel, S. M., Sharif, W. D., Kain, S. R., and Piston, D. W. (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73, 2782–2790.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Tooraj Mirshahi
    • 1
  • Diomedes E. Logothetis
    • 1
  • Massimo Sassaroli
    • 1
  1. 1.Department of Physiology and BiophysicsMount Sinai School of MedicineNew YorkNY

Personalised recommendations