Advertisement

Confocal Imaging of GFP-Labeled Ion Channels

  • Bryan D. Moyer
  • Bruce A. Stanton
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

The generation and maintenance of cell polarity is crucial for vectorial solute and fluid transport in epithelial cells and for the normal function of neurons. Epithelial cells must asymmetrically distribute receptors, transporters, and ion channels between the apical and basolateral membranes in order to establish and maintain polarity and function (1, 2, 3, 4). Neurons also must asymmetrically distribute proteins between axons and somatodendritic regions to propagate action potentials from one cell to the next (5). In general, proteins sorted to the apical membrane of epithelia are expressed in the axons of neurons, whereas proteins sorted to the basolateral membrane of epithelia are distributed to the somatodendritic region of neurons (5). To achieve this asymmetry, cells target newly synthesized transport proteins to the appropriate membrane —either apical (axon) or basolateral (dendritic)— and retain them there following their delivery.

Keywords

Green Fluorescent Protein Cystic Fibrosis Transmembrane Conductance Regulator Apical Membrane MDCK Cell Basolateral Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Caplan, M. J. (1997) Ion pumps in epithelial cells: sorting, stabilization, and polarity. Am. J. Physiol. Gastrointest. Liver Physiol. 272, G1304–G1313.Google Scholar
  2. 2.
    Brown, D. and Stow, J. L. (1996) Protein trafficking and polarity in kidney epithelium: from cell biology to physiology. Physiol. Rev. 76, 245–297.PubMedGoogle Scholar
  3. 3.
    Mays, R. W., Nelson, W. J., and Marrs, J. A. (1995) Generation of epithelial cell polarity: roles for protein trafficking, membrane-cytoskeleton, and E-Cadherinmediated cell adhesion. Cold Spring Harbor Symp. Quant. Biol. LX, 763–773.Google Scholar
  4. 4.
    Aroeti, B., Okhrimenko, H., Reich, V., and Orzech, E. (1998) Polarized trafficking of plasma membrane proteins: emerging roles for coats, SNAREs, GTPases and their link to the cytoskeleton. Biochim. Biophys. Acta Rev. Biomembr. 1376, 57–90.Google Scholar
  5. 5.
    Bradke, F. and Dotti, C. G. (1998) Membrane traffic in polarized neurons. Biochim. Biophys. Acta Mol. Cell Res. 1404, 245–258.CrossRefGoogle Scholar
  6. 6.
    Hammerton, R. W., Krzeminski, K. A., Mays, R. W., Ryan, T. A., Wollner, D. A., and Nelson, W. J. (1991) Mechanism for regulating cell surface distribution of Na+, K+-ATPase in polarized epithelial cells. Science 254, 847–850.PubMedCrossRefGoogle Scholar
  7. 7.
    Morrow, J. S., Cianci, C. D., Ardito, T., Mann, A. S., and Kashgarian, M. (1989) Ankyrin links fodrin to the alpha subunit of Na,K-ATPase in Madin-Darby canine kidney cells and in intact renal tubule cells. J. Cell Biol. 108, 455–465.PubMedCrossRefGoogle Scholar
  8. 8.
    Gut, A., Balda, M. S., and Matter, K. (1998) The cytoplasmic domains of a β1 integrin mediate polarization in Madin-Darby canine kidney cells by selective basolateral stabilization. J. Biol. Chem. 273, 29,381–29,388.PubMedCrossRefGoogle Scholar
  9. 9.
    Fanning, A. S. and Anderson, J. M. (1999) PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. J. Clin. Invest. 103, 767–772.PubMedCrossRefGoogle Scholar
  10. 10.
    Perego, C., Vanoni, C., Villa, A., Longhi, R., Kaech, S. M., Fröhli, E., et al. (1999) PDZ-mediated interactions retain the epithelial GABA transporter on the basolateral surface of polarized epithelial cells. EMBO J. 18, 2384–2393.PubMedCrossRefGoogle Scholar
  11. 11.
    Rongo, C., Whitfield, C. W., Rodal, A., Kim, S. K., and Kaplan, J. M. (1998) LIN-10 is a shared component of the polarized protein localization pathways in neurons and epithelia. Cell 94, 751–759.PubMedCrossRefGoogle Scholar
  12. 12.
    Simske, J. S., Kaech, S. M., Harp, S. A., and Kim, S. K. (1996) LET-23 receptor localization by the cell junction protein LIN-7 during C. elegans vulval induction. Cell 85, 195–204.PubMedCrossRefGoogle Scholar
  13. 13.
    Kaech, S. M., Whitfield, C. W., and Kim, S. K. (1998) The LIN-2/LIN-7/ LIN-10 complex mediates basolateral membrane localization of the C. elegans EGF receptor LET-23 in vulval epithelial cells. Cell 94, 761–771.PubMedCrossRefGoogle Scholar
  14. 14.
    Ponce, A., Vega-Saenz de Miera, E., Kentros, C., Moreno, H., Thornhill, B., and Rudy, B. (1997) K+ channel subunit isoforms with divergent carboxyterminal sequences carry distinct membrane targeting signals. J. Memb. Biol. 159, 149–159.CrossRefGoogle Scholar
  15. 15.
    Muth, T. R., Ahn, J., and Caplan, M. J. (1998) Identification of sorting determinants in the C-terminal cytoplasmic tails of the gamma-amino butyric acid transporters GAT-2 and GAT-3. J. Biol. Chem. 273, 25,616–25,627.PubMedCrossRefGoogle Scholar
  16. 16.
    Kornau, H. C., Seeburg, P. H., and Kennedy, M. B. (1997) Interaction of ion channels and receptors with PDZ domain proteins. Curr. Opin. Neurobiol. 7, 368–373.PubMedCrossRefGoogle Scholar
  17. 17.
    Saras, J. and Heldin, C. H. (1996) PDZ domains bind carboxy-terminal sequences of target proteins. Trends Biochem. Sci. 21, 455–458.PubMedCrossRefGoogle Scholar
  18. 18.
    Tsunoda, S., Sierralta, J., Sun, Y., Bodner, R., Suzuki, E., Becker, A., et al. (1997) A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 388, 243–249.PubMedCrossRefGoogle Scholar
  19. 19.
    Crawford, I., Maloney, P. C., Zeitlin, P. L., Guggino, W. B., Hyde, S. C., Turley, H., et al. (1991) Immunocytochemical localization of the cystic fibrosis gene product CFTR. Proc. Natl. Acad. Sci. USA 88, 9262–9266.PubMedCrossRefGoogle Scholar
  20. 20.
    Denning, G. M., Ostedgaard, L. S., Cheng, S. H., Smith, A. E., and Welsh, M. J. (1992) Localization of cystic fibrosis transmembrane conductance regulator in chloride secretory epithelia. J. Clin. Invest. 89, 339–349.PubMedCrossRefGoogle Scholar
  21. 21.
    Stanton, B. A. (1997) Cystic fibrosis transmembrane conductance regulator (CFTR) and renal function. Wien Klin Wochenschr 109, 457–464.PubMedGoogle Scholar
  22. 22.
    Mickle, J. E. and Cutting, G. R. (1998) Clinical implications of cystic fibrosis transmembrane conductance regulator mutations. Clin, in Chest Med. 19, 2/1–2/16.Google Scholar
  23. 23.
    Davis, P. B., Drumm, M., and Konstan, M. W. (1996) Cystic fibrosis. Am. J. Respir. Crit. Care Med. 154, 1229–1256.PubMedGoogle Scholar
  24. 24.
    Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., et al. (1989) Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 245, 1066–1073.PubMedCrossRefGoogle Scholar
  25. 25.
    Jilling, T. and Kirk, K. L. (1997) The biogenesis, traffic, and function of the cystic fibrosis transmembrane conductance regulator. Int. Rev. Cytol. 172, 193–241.PubMedCrossRefGoogle Scholar
  26. 26.
    Cheng, S. H., Gregory, R. J., Marshall, J., Paul, S., Souza, D. W., White, G. A., et al. (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827–834.PubMedCrossRefGoogle Scholar
  27. 27.
    Pasyk, E. A. and Foskett, J. K. (1997) Cystic fibrosis transmembrane conductance regulator-associated ATP and adenosine 3’-phosphate 5’-phosphosulfate channels in endoplasmic reticulum and plasma membranes. J. Biol. Chem. 272, 7746–7751.PubMedCrossRefGoogle Scholar
  28. 28.
    Chalfie, M. and Kain, S. (1998) Green Flourescent Protein: Properties, Applications and Protocols, Wiley-Liss & Sons, Inc., New York.Google Scholar
  29. 29.
    Conn, P. M. (1999) Methods In Enzymology: Green Fluorescent Protein, Academic, San Diego.Google Scholar
  30. 30.
    Sullivan, K. F. and Kay, S. A. (1999) Methods In Cell Biology: Green Fluorescent Proteins, Academic, San Diego.Google Scholar
  31. 31.
    Sandison, D. R., Williams, R. M., Wells, K. S., Strickler, J., and Webb, W. W. (1995) Quantitative fluorescence confocal laser scanning microscopy (CLSM), in Handbook of Biological Confocal Microscopy (Pawley, J. B., ed.), Plenum, New York, pp. 39–54.Google Scholar
  32. 32.
    Moyer, B. D., Loffing, J., Schwiebert, E. M., Loffing-Cueni, D., Halpin, P. A., Karlson, K. H., et al. (1998) Membrane trafficking of the cystic fibrosis gene product, cystic fibrosis transmembrane conductance regulator, tagged with green fluorescent protein in Madin-Darby canine kidney cells. J. Biol. Chem. 273, 21,759–21,768.PubMedCrossRefGoogle Scholar
  33. 33.
    Moyer, B. D., Loffing-Cueni, D., Loffing, J., Reynolds, D., and Stanton, B. A. (1999) Butyrate increases apical membrane CFTR but reduces chloride secretion in MDCK cells. Am. J. Physiol (Renal Physiol.) 277, F271–F276.Google Scholar
  34. 34.
    Moyer, B. D., Denton, J., Karlson, K. H., Reynolds, D., Wang, S., Mickle, J. E., et al. (1999) A PDZ-interacting domain in CFTR is an apical membrane polarization signal. J. Clin. Invest. 104, 1363–1374.CrossRefGoogle Scholar
  35. 35.
    Wang, S. S., Raab, R. W., Schatz, P. J., Guggino, W. B., and Li, M. (1998) Peptide binding consensus of the NHE-RF-PDZ1 domain matches the C-terminal sequence of cystic fibrosis transmembrane conductance regulator (CFTR). FEBS Lett. 427, 103–108.PubMedCrossRefGoogle Scholar
  36. 36.
    Short, D. B., Trotter, K. W., Reczek, D., Kreda, S. M., Bretscher, A., Boucher, R. C., et al. (1998) An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J. Biol. Chem. 273, 19,797–19,801.PubMedCrossRefGoogle Scholar
  37. 37.
    Hall, R. A., Ostedgaard, L. S., Premont, R. T., Blitzer, J. T., Rahman, N., Welsh, M. J., and Lefkowitz, R. J. (1998) A C-terminal motif found in the β2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proc. Natl. Acad. Sci. USA 95, 8496–8501.PubMedCrossRefGoogle Scholar
  38. 38.
    Morris, A. P., Cunningham, S. A., Benos, D. J., and Frizzell, R. A. (1992) Cellular differentiation is required for cAMP but not Ca2+-dependent Cl-secretion in colonic epithelial cells expressing high levels of cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 267, 5575–5583.PubMedGoogle Scholar
  39. 39.
    Morris, A. P., Cunningham, S. A., Tousson, A., Benos, D. J., and Frizzell, R. A. (1994) Polarization-dependent apical membrane CFTR targeting underlies cAMP-stimulated Cl-secretion in epithelial cells. Am. J. Physiol. Cell Physiol. 266, C254–C268.Google Scholar
  40. 40.
    Mohamed, A., Ferguson, D., Seibert, F. S., Cai, H. M., Kartner, N., Grinstein, S., et al. (1997) Functional expression and apical localization of the cystic fibrosis transmembrane conductance regulator in MDCK I cells. Biochem. J. 322, 259–265.PubMedGoogle Scholar
  41. 41.
    Gekle, M., Wunsch, S., Oberleithner, H., and Silbernagl, S. (1994) Characterization of two MDCK-cell subtypes as a model system to study prinicpal cell and intercalated cell properties. Pflügers Arch. 428, 157–162.PubMedCrossRefGoogle Scholar
  42. 42.
    Blazer-Yost, B. L., Record, R. D., and Oberleithner, H. (1996) Characterization of hormone stimulated Na+ transport in a high-resistance clone of the MDCK cell line. Pflugers Arch. 432, 685–691.PubMedCrossRefGoogle Scholar
  43. 43.
    Blazer-Yost, B. L., Record, R. D., and Lahr, T. (1997) cAMP stimulation of ion transport in a high resistance subclone of the MDCK cell line. Physiologist 40(5), A4 (Abstract).Google Scholar
  44. 44.
    Girotti, M. and Banting, G. (1996) TGN38-green fluorescent protein hybrid proteins expressed in stably transfected eukaryotic cells provide a tool for the real-time, in vivo study of membrane traffic pathways and suggest a possible role for ratTGN38. J. Cell Sci. 109, 2915–2926.PubMedGoogle Scholar
  45. 45.
    Tarasova, N. I., Stauber, R. H., Choi, J. K., Hudson, E. A., Czerwinski, G., Miller, J. L., et al. (1997) Visualization of G protein-coupled receptor trafficking with the aid of the green fluorescent protein: endocytosis and recycling of cholecystokinin receptor type A. J. Biol. Chem. 272, 14,817–14,824.PubMedCrossRefGoogle Scholar
  46. 46.
    Olson, K. R., McIntosh, J. R., and Olmsted, J. B. (1995) Analysis of MAP 4 function in living cells using green fluorescent protein (GFP) chimeras. J. Cell Biol. 130, 639–650.PubMedCrossRefGoogle Scholar
  47. 47.
    Rizzuto, R., Brini, M., Pizzo, P., Murgia, M., and Pozzan, T. (1995) Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr. Biol. 5(6), 635–642.PubMedCrossRefGoogle Scholar
  48. 48.
    Gottardi, C. J. and Caplan, M. J. (1993) An ion-transporting ATPase encodes multiple apical localization signals. J. Cell Biol. 121, 283–293.PubMedCrossRefGoogle Scholar
  49. 49.
    Cubitt, A. B., Heim, R., Adams, S. R., Boyd, A. E., Gross, L. A., and Tsien, R. Y. (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20, 448–455.PubMedCrossRefGoogle Scholar
  50. 50.
    Marshall, J., Molloy, R., Moss, G. W. J., Howe, J. R., and Hughes, T. E. (1995) The jellyfish green fluorescent protein: a new tool for studying ion channel expression and function. Neuron 14, 211–215.PubMedCrossRefGoogle Scholar
  51. 51.
    Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G., and Cormier, M. J. (1992) Primary structure of the Aequorea victoria green fluorescent protein. Gene 111, 229–233.PubMedCrossRefGoogle Scholar
  52. 52.
    Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.PubMedCrossRefGoogle Scholar
  53. 53.
    Makhina, E. N. and Nichols, C. G. (1998) Independent trafficking of KATP channel subunits to the plasma membrane. J. Biol. Chem. 273, 3369–3374.PubMedCrossRefGoogle Scholar
  54. 54.
    Grabner, M., Dirksen, R. T., and Beam, K. G. (1998) Tagging with green fluorescent protein reveals a distinct subcellular distribution of L-type and non-Ltype Ca2+ channels expressed in dysgenic myotubes. Proc. Natl. Acad. Sci. USA 95, 1903–1908.PubMedCrossRefGoogle Scholar
  55. 55.
    John, S. A., Monck, J. R., Weiss, J. N., and Ribalet, B. (1998) The sulphonylurea receptor SUR1 regulates ATP-sensitive mouse Kir6. 2 K+ channels linked to the green fluorescent protein in human embryonic kidney cells (HEK 293). J. Physiol. (Lond.) 510, 333–345.CrossRefGoogle Scholar
  56. 56.
    Meyer, E. and Fromherz, P. (1999) Ca2+ activation of hSlo K+ channel is suppressed by N-terminal GFP tag. Eur. J. Neurosci. 11, 1105–1108.PubMedCrossRefGoogle Scholar
  57. 57.
    Johns, D. C., Nuss, H. B., and Marban, E. (1997) Suppression of neuronal and cardiac transient outward currents by viral gene transfer of dominant-negative Kv4. 2 constructs. J. Biol. Chem. 272, 31,598–31,603.PubMedCrossRefGoogle Scholar
  58. 58.
    Rae, J. L. and Shepard, A. R. (1998) Inwardly rectifying potassium channels in lens epithelium are from the IRK1 (Kir 2. 1) family. Exp. Eye Res. 66, 347–359.PubMedCrossRefGoogle Scholar
  59. 59.
    Rae, J. L. and Shepard, A. R. (1998) Molecular biology and electro physiology of calcium-activated potassium channels from lens epithelium. Curr. Eye Res. 17, 264–275.PubMedCrossRefGoogle Scholar
  60. 60.
    Neuhuber, B., Gerster, U., Doring, F., Glossmann, H., Tanabe, T., and Flucher, B. E. (1998) Association of calcium channel α1S and β1a subunits is required for the targeting of β1a but not of αf1S into skeletal muscle triads. Proc. Natl. Acad. Sci. USA 95, 5015–5020.PubMedCrossRefGoogle Scholar
  61. 61.
    Park, K., Arreola, J., Begenisich, T., and Melvin, J. E. (1998) Comparison of voltage-activated Cl-channels in rat parotid acinar cells with ClC-2 in a mammalian expression system. J. Membrane Biol. 163, 87–95.CrossRefGoogle Scholar
  62. 62.
    Petrecca, K., Atanasiu, R., Akhavan, A., and Shrier, A. (1999) N-linked glycosylation sites determine HERG channel surface membrane expression. J. Physiol. (Lond.) 515, 41–48.CrossRefGoogle Scholar
  63. 63.
    Mall, M., Bleich, M., Kuehr, J., Brandis, M., Greger, R., and Kunzelmann, K. (1999) CFTR-mediated inhibition of epithelial Na+ conductance in human colon is defective in cystic fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 277, G709–G716.Google Scholar
  64. 64.
    Griffiths, G., Parton, R. G., Lucocq, J., Van Deurs, B., Brown, D., Slot, J. W., and Geuze, H. J. (1993) The immunofluorescent era of membrane traffic. Trends Cell Biol. 3, 214–219.PubMedCrossRefGoogle Scholar
  65. 65.
    Dobson, S. P., Livingstone, C., Gould, G. W., and Tavare, J. M. (1996) Dynamics of insulin-stimulated translocation of GLUT4 in single living cells visualised using green fluorescent protein. FEBS Lett. 393, 179–184.PubMedCrossRefGoogle Scholar
  66. 66.
    Pouli, A. E., Kennedy, H. J., Schofield, J. G., and Rutter, G. A. (1998) Insulin targeting to the regulated secretory pathway after fusion with green fluorescent protein and firefly luciferase. Biochem. J. 331, 669–675.PubMedGoogle Scholar
  67. 67.
    Chalfant, M. L., Denton, J. S., Langlogh, A. L., Karlson, K. H., Loffing, J., Benos, D. J., and Stanton, B. A. (1999) The NH2-terminus of the epithelial sodium channel contains an endocytic motif. J. Biol. Chem. 274(12), 32,889–32,896.PubMedCrossRefGoogle Scholar
  68. 68.
    Gustafson, C. E., Levine, S., Katsura, T., McLaughlin, M., Aleixo, M. D., Tamarappoo, B. K., et al. (1998) Vasopressin regulated trafficking of a green fluorescent protein-aquaporin 2 chimera in LLC-PK1 cells. Histochem. Cell Biol. 110, 377–386.PubMedCrossRefGoogle Scholar
  69. 69.
    Johnston, J. A., Ward, C. L., and Kopito, R. R. (1998) Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143, 1883–1898.PubMedCrossRefGoogle Scholar
  70. 70.
    Carey, K. L., Richards, S. A., Lounsbury, K. M., and Macara, I. G. (1996) Evidence using a green fluorescent protein-glucocorticoid receptor chimera that the RAN/TC4 GTPase mediates an essential function independent of nuclear protein import. J. Cell Biol. 133, 985–996.PubMedCrossRefGoogle Scholar
  71. 71.
    Lybarger, L., Dempsey, D., Franek, K. J., and Chervenak, R. (1996) Rapid generation and flow cytometric analysis of stable GFP-expressing cells. Cytometry 25, 211–220.PubMedCrossRefGoogle Scholar
  72. 72.
    Muldoon, R. R., Levy, J. P., Kain, S. R., Kitts, P. A., and Link, C. J., Jr. (1997) Tracking and quantitation of retroviral-mediated transfer using a completely humanized, red-shifted green fluorescent protein gene. BioTechniques 22, 162–167.PubMedGoogle Scholar
  73. 73.
    Evers, R., Kool, M., van Deemter, L., Janssen, H., Calafat, J., Oomen, L. C., et al. (1998) Drug export activity of the human canalicular multispecific organic anion transporter in polarized kidney MDCK cells expressing cMOAT (MRP2) cDNA. J. Clin. Invest. 101, 1310–1319.PubMedGoogle Scholar
  74. 74.
    Marshall, J., Fang, S., Ostegaard, L. S., O’Riordan, C. R., Ferrara, D., Amara, J. F., et al. (1994) Stoichiometry of recombinant cystic fibrosis transmembrane conductance regulator in epithelial cells and its functional reconstitution into cells in vitro. J. Biol. Chem. 269, 2987–2995.Google Scholar
  75. 75.
    Cheng, S. H., Rich, D. P., Marshall, J., Gregory, R. J., Welsh, M. J., and Smith, A. E. (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66, 1027–1036.PubMedCrossRefGoogle Scholar
  76. 76.
    Tabcharani, J. A., Chang, X.-B., Riordan, J. R., and Hanrahan, J. W. (1991) Phosphorylation-regulated Cl-channel in CHO cells stably expressing the cystic fibrosis gene. Nature 352, 628–631.PubMedCrossRefGoogle Scholar
  77. 77.
    Lidofsky, S. D., Sostman, A., and Fitz, J. G. (1997) Regulation of cation-selective channels in liver cells. J. Membr. Biol. 157, 231–236.PubMedCrossRefGoogle Scholar
  78. 78.
    Loffing, J., Moyer, B. D., McCoy, D., and Stanton, B. A. (1998) Exocytosis is not involved in activation of Cl-secretion via CFTR in Calu-3 airway epithelial cells. Am. J. Physiol. Cell Physiol. 275, C913–C920.Google Scholar
  79. 79.
    Howard, M., Jilling, T., DuVall, M., and Frizzell, R. A. (1996) cAMP-regulated trafficking of epitope-tagged CFTR. Kidney Int. 49, 1642–1648.PubMedCrossRefGoogle Scholar
  80. 80.
    Bradbury, N. A. (1999) Intracellular CFTR: localization and function. Physiol. Rev. 79, S175–S191.PubMedGoogle Scholar
  81. 81.
    Bradbury, N. A. and Bridges, R. J. (1994) Role of membrane trafficking in plasma membrane solute transport. Am. J. Physiol. Cell Physiol. 267, C1–C24.Google Scholar
  82. 82.
    Morris, A. P. and Frizzell, R. A. (1994) Vesicle targeting and ion secretion in epithelial cells: implications for cystic fibrosis. Ann. Rev. Physiol. 56, 371–397.CrossRefGoogle Scholar
  83. 83.
    Matlin, K. S. and Simons, K. (1983) Reduced temperature prevents transfer of a membrane glycoprotein to the cell surface but does not prevent terminal glycosylation. Cell 34, 233–243.PubMedCrossRefGoogle Scholar
  84. 84.
    Lehrich, R. W., Aller, S. G., Webster, P., Marino, C. R., and Forrest, J. N., Jr. (1998) Vasoactive intestinal peptide, forskolin, and genistein increase apical CFTR trafficking in the rectal galnd of the spiny dogfish. Acute regulation of CFTR trafficking of CFTR in an intact epithelium. J. Clin. Invest. 101, 737–747.PubMedCrossRefGoogle Scholar
  85. 85.
    Perego, C., Vanoni, C., Villa, A., Longhi, R., Kaech, S. M., Frohli, E., et al. (1999) PDZ-mediated interactions retain the epithelial GABA transporter on the basolateral surface of polarized epithelial cells. EMBO J. 18, 2384–2393.PubMedCrossRefGoogle Scholar
  86. 86.
    Rich, D. P., Gregory, R. J., Cheng, S. H., Smith, A. E., and Welsh, M. J. (1993) Effect of deletion mutations on the function of CFTR chloride channels. Receptors Channels 1, 221–232.PubMedGoogle Scholar
  87. 87.
    Zhang, L., Wang, D. H., Fischer, H., Fan, P. D., Widdicombe, J. H., Kan, Y. W., and Dong, J. Y. (1998) Efficient expression of CFTR function with adenoassociated virus vectors that carry shortened CFTR genes. Proc. Natl. Acad. Sci. USA 95, 10,158–10,163.PubMedCrossRefGoogle Scholar
  88. 88.
    Mickle, J. E., Macek, M., Jr., Fulmer-Smentek, S. B., Egan, M. M., Schwiebert, E., Guggino, W., et al. (1998) A mutation in the cystic fibrosis transmembrane conductance regulator gene associated with elevated sweat chloride concentrations in the absence of cystic fibrosis. Hum. Mol. Genet. 7, 729–735.PubMedCrossRefGoogle Scholar
  89. 89.
    Rizzuto, R., Brini, M., De Giorgi, F., Rossi, R., Heim, R., Tsien, R. Y., and Pozzan, T. (1996) Double labelling of subcellular structures with organelletargeted GFP mutants in vivo. Curr. Biol. 6, 183–188.Google Scholar
  90. 90.
    Heim, R. and Tsien, R. Y. (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6(2), 178–182.PubMedCrossRefGoogle Scholar
  91. 91.
    Tsien, R. Y. (1998) The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544.PubMedCrossRefGoogle Scholar
  92. 92.
    Gonzalez, J. E. and Negulescu, P. A. (1998) Intracellular detection assays for high-throughput screening. Curr. Opin. Biotechnol. 9, 624–631.PubMedCrossRefGoogle Scholar
  93. 93.
    Matz, M. V., Fradkov, A. F., Labas, Y. A., Savitsky, A. P., Zaraisky, A. G., Markelov, M. L., and Lukyanov, S. A. (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 17, 969–973.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Bryan D. Moyer
    • 1
  • Bruce A. Stanton
    • 2
  1. 1.Department of Cell BiologyThe Scripps Research InstituteSan Diego
  2. 2.Department of PhysiologyDartmouth Medical SchoolHanover

Personalised recommendations