Skip to main content

Targeting Cerebral Muscarinic Acetylcholine Receptors with Radioligands for Diagnostic Nuclear Medicine Studies

  • Protocol
Ion Channel Localization

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Nerve cells communicate via the release of chemical messengers (neurotransmitters) which bind to a site (receptor) on another or the same cell causing an effect. The various neuroreceptor classes are responsible for important functions such as movement, memory, and learning. Naturally occurring neurotransmitters are agonists, molecules that trigger an effect in the target cell after binding to the receptor site. In most cases, the binding period of an agonist to the receptor is short and after release from the receptor, the agonist is rapidly taken up by the same nerve cell (reuptake) or metabolized by various bioenzymes. Antagonists are artificial “false” neurotransmitters that bind to a receptor, often with similar or higher affinity compared to an agonist, but do not cause an effect in the target receptor other than preventing the binding of the agonist. Typically, antagonists are designed to increase the binding affinity to the receptor site, to delay release from the receptor pocket, and inhibit the metabolism by bioenzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  1. Burgen, A. S. V. (1995) The background of the muscarinic system. Life Sci. 11/ 12: 801–806.

    Article  Google Scholar 

  2. Mutschler, E., Moser, U., Wess, J., and Lambrecht, G. (1989) Muscarinic receptor subtypes: agonists and antagonists, in Progress in Pharmacology and Clinical Pharmacology, vol. 7/1, (Zwieten, P. A. and vanand-Schonbaum, E., eds.), Gustav Fischer Verlag, Stuttgart, pp. 13–31.

    Google Scholar 

  3. Buckley, N. J., Bonner, T. I., Buckley, C. M., and Brann, M. R. (1989) Antagonist binding properties of five cloned muscarinic receptors expresses in CHOK1 cells. Mol. Pharmacol. 35, 469–476.

    PubMed  CAS  Google Scholar 

  4. Gainetdinov, P. R. and Caron, M. G. (1999) Delineating muscarinic receptor functions. Proc. Natl. Acad. Sci. USA 96, 12,222–12,223.

    Article  PubMed  CAS  Google Scholar 

  5. Levey, A. I. (1993) Immunological localization of m1-m5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci. 52, 441–448.

    Article  PubMed  CAS  Google Scholar 

  6. Levey, A. I. (1996) Muscarinic acetylcholine receptor expression in memory circuits: implications for treatment of Alzheimer disease. Proc. Natl. Acad. Sci. USA 93, 13,541–13,546.

    Article  PubMed  CAS  Google Scholar 

  7. Brown, J. H. and Taylor, P. (1996) Muscarinic receptor agonists and antagonists, in The Pharmacological Basis of Therapeutics (Hardman, J. G. and Limbird, L. E., eds.), McGraw-Hill, NY, pp 141–160.

    Google Scholar 

  8. Baghdoyan, H. A. and Lydic, R. (1999) M2 muscarinic receptor subtype in the feline medial pontine reticular formation modulates the amount of rapid eye movement sleep. Sleep 22, 835–847.

    PubMed  CAS  Google Scholar 

  9. Nordberg, A., Alaguzoff, I., and Winblad, B. (1992) Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J. Neurosci. Res. 31, 103–111.

    Article  PubMed  CAS  Google Scholar 

  10. Freund, G. and Ballinger, W. E. (1991) Loss of synaptic receptors can precede morphologic changes induced by alcoholism. Alcohol Alcoholism (Suppl. 1), 385–391.

    CAS  Google Scholar 

  11. Kinney, H. C., Filiano, J. J., Sleeper, L. A., Mandel, L. F., Valdes-Dapena, M., and White, W. F. (1995) Decreased muscarinic receptor binding in the arcuate nucleus in sudden infant death syndrome. Science 269, 1446–1450.

    Article  PubMed  CAS  Google Scholar 

  12. Nagren, K., Halldin, C., Muller, L., Swahn, C. G., and Lehikoinen, P. (1995) Comparison of [11C]methyl triflate and [11C]methyl iodide in the synthesis of PET radioligands such as [11C]beta-CIT and [11C]beta-CFT. Nucl. Med. Biol. 22, 965–979.

    Article  PubMed  CAS  Google Scholar 

  13. Prenant, C., Barre, L., and Crouzel, C. (1989) Synthesis of [11C]-3-quinuclidinyl benzilate (QNB). J. Labelled Comp. Rad. 27, 1257–1265.

    Article  CAS  Google Scholar 

  14. Halldin, C., Farde, L., Hogberg, T., Hall, H., Strom, P., Ohlberger, A., and Solin, O. (1991) A comparative PET-study of five carbon-11 or fluorine-18 labelled salicylamindes. Preparation and in vitro dopamine D-2 receptor binding. Nucl. Med. Biol. 18, 871–881.

    CAS  Google Scholar 

  15. Lang, L., Jagoda, E., Schmall, B., Vuong, B. K., Adams, R., Nelson, D. L., Carson, R. E., and Eckelman, W. C. (1999) Development of fluorine-18-labeled 5HT1A antagonists. J. Med. Chem. 42, 1576–1586.

    Article  PubMed  CAS  Google Scholar 

  16. Seevers, R. H. and Counsell, R. E. (1982) Radioiodination techniques for small organic molecules. Chem. Rev. 82, 575–590.

    Article  CAS  Google Scholar 

  17. Kampfer, I., Heinicke, J., Sorger, D., Schulze, K., Schliebs, R., and Knapp, W. H. (1996) Novel preparation of (R,R)bromo-3-quinuclidinyl benzilate (Br-QNB), a precursor for the synthesis of (R,R)[123I]iodo-QNB. J. Labelled Comp. Rad. 38, 1047–1052.

    Article  Google Scholar 

  18. Sternbach, L. H. and Kaiser, S. (1952) Antispasmodics. I. Bicyclic basic alcohols. J. Am. Chem. Soc. 74, 2215–2218.

    Article  CAS  Google Scholar 

  19. Beckett, A. H., Lan, N. T., and Khokhar, A. Q. (1971) Anti-acetylcholinesterase activity of some stereoisomeric aminoboranes. J. Pharm. Pharmacol. 23, 528–533.

    PubMed  CAS  Google Scholar 

  20. Rzeszotarski, W. J., Eckelman, W. C., Francis, B. E., Simms, D. A., Gibson, R. E., Jagoda, E. M., et al. (1984) Synthesis and evaluation of radioiodinated derivatives of 1-azabicyclo[2.2.2]oct-3-yl α-hydroxy-α-(4-iodophenyl)-α-phenylacetate as potential radiopharmaceuticals. J. Med. Chem. 27, 156–159.

    Article  PubMed  CAS  Google Scholar 

  21. Kiesewetter, D. O., Silverton, J. V., and Eckelman, W. C. (1995) Synthesis and biological properties of chiral fluoroalkyl quinuclidinyl benzilates. J. Med. Chem. 38, 1711–1719.

    Article  PubMed  CAS  Google Scholar 

  22. Gibson, R.E. (1990) Muscarinic acetylcholine receptors, in Quantitative Imaging. Neuroreceptors, Neurotransmitters, and Enzymes (Frost, J. J., Wagner, H. N., Jr., eds.), Raven Press, Boston, MA, pp. 129–152.

    Google Scholar 

  23. Eckelman, W. C., Reba, R. C., Rzeszotarski, W. J., Gibson, R. E., Hill, T., Holman, B.L., et al. (1984) External imaging of cerebral muscarinic acetylcholine receptors. Science 223, 291–294.

    Article  PubMed  CAS  Google Scholar 

  24. Holman, B. L., Gibson, R. E., Hill, T. C., Eckelman, W. C., Albert, M., and Reba, R. C. (1985) Muscarinic acetylcholine receptors in Alzheimer’s disease, in vivo imaging with iodine 123-labeled 3-quinuclidinyl 4-iodobenzilate and emission tomography. JAMA 254, 3063–3066.

    Article  PubMed  CAS  Google Scholar 

  25. Weinburger, D. R., Gibson, R., Coppola, R., Jones, D. W., Molchan, S., Sunderland, T., et al. (1991) The distribution of cerebral muscarinic acetylcholine receptors in vivo in patients with dementia. A controlled study with 123IQNB and single photon emission computed tomography. Arch. Neurol. 48, 169–176.

    Google Scholar 

  26. Owens, J., Murray, T., McCulloch, J., and Wyper, W. (1992) Synthesis of (R,R)-[123I]-QNB, a SPECT imaging agent for cerebral muscarinic acetylcholine receptors in vivo. J. Labelled Comp. Rad. 31, 45–60.

    Article  CAS  Google Scholar 

  27. Weinburger, D. R., Jones, D., Reba, R. C., Mann, U., Coppola, R., Gibson, R., et al. (1992) A comparison of FDG PET and IQNB SPECT in normal subjects and in patients with dementias. J. Neuropsychiatry Clin. Neursci. 4, 239–248.

    Google Scholar 

  28. Wyper, J., Brown, D., Patterson, J., Owens, J., Hunter, R., Teasdale, E., and McCulloch, J. (1993) Deficits in iodine-labelled 3-quinuclidinyl benzilate binding in relation to cerebral blood flow in patients with Alzheimer’s disease. Eur. J. Nucl. Med. 20, 379–386.

    Article  PubMed  CAS  Google Scholar 

  29. Sunderland, T., Esposito, G., Molchan, S. E., Coppola, R., Jones, D. W., Gorey, J., et al. (1995) Differential cholinergic regulation in Alzheimer’s patients compared to controls following chronic blockade with scopolamine: a SPECT study. Psychopharmacology 121, 231–241.

    Article  PubMed  CAS  Google Scholar 

  30. Laduron, P. M. and Janssen, P. F. M. (1979) Characterization and subcellular localization of brain muscarinic receptors labelled in vivo by [3H]dexetimide. J. Neurochem. 33, 1223–1231.

    Article  PubMed  CAS  Google Scholar 

  31. Wilson, A. A., Dannals, R. F., Ravert, H. T., Frost, J. J., and Wagner, H. N., Jr. (1989) Synthesis and biological evaluation of [125I]-and [123I]-4-iododexetimde, a potent muscarinic cholinergic receptor antagonist. J. Med. Chem. 32, 1057–1062.

    Article  PubMed  CAS  Google Scholar 

  32. Boundy, K. L., Barnden, L. R., Rowe, C. C., Reid, M., Kassiou, M., Katsifis, A. G., and Lambrecht, R. M. (1995) Human dosimetry and biodistribution of iodine-123-iododexetimide: a SPECT imaging agent for cholinergic muscarinic neuroreceptors. J. Nucl. Med. 36, 1332–1338.

    PubMed  CAS  Google Scholar 

  33. Muller-Gartner, H. W., Wilson, A. A., Dannals, R. F., Wagner, H. N., Jr., and Frost, J. J. (1992) Imaging muscarinic cholinergic receptors in human brain in vivo with SPECT, [I-123]-4-iododexetimide and [I-123]-4-iodolevetimide. J. Cereb. Blood Flow Metab. 12, 562–570.

    PubMed  CAS  Google Scholar 

  34. Muller-Gartner, H. W., Mayberg, H. S., Fisher, R. S., Lesser, R. P., Wilson, A. A., Ravert, H. T., et al. (1993) Decreased hippocampal muscarinic cholinergic receptor-binding measured by I-123 iododexetimide and single photon emission computed tomography in epilepsy. Ann. Neurol. 34, 235–238.

    Article  PubMed  CAS  Google Scholar 

  35. Boundy, K. L., Rowe, C. C., Black, A. B., Kitchener, M. I., Barnden, L. R., Sebben, R., et al. (1996) Localization of temporal lobe epileptic foci with iodine-123 iododexetimide cholinergic neuroreceptor single-photon emission computed tomography. Neurology 47, 1015–1020.

    PubMed  CAS  Google Scholar 

  36. Weckesser, M., Hufnagel, A., Ziemons, K., Griessmeier, M., Sonnenberg, F., Hacklander, T., et al. (1997) Effect of partial volume correction on muscarinic cholinergic receptor imaging with single-photon emission tomography in patients with temporal lobe epilepsy. Eur. J. Nucl. Med. 24, 1156–1161.

    PubMed  CAS  Google Scholar 

  37. Claus, J. J., Dubois, E. A., Booij, J., Habraken, J., de Munck, J. C., van Herk, M., et al. (1997) Demonstration of a reduction in muscarinic receptor binding in early Alzheimer’s disease using iodine-123 dexetimide single-photon emission tomography. Eur. J. Nucl. Med. 24, 602–608.

    PubMed  CAS  Google Scholar 

  38. McPherson, D. W., DeHaven-Hudkins, D. L., Callahan, A. P., and Knapp, F. F., Jr. (1993) Synthesis and biodistribution of iodine-125-labeled 1-azabicyclo[2.2.2]oct-3-yl α-hydroxy-α-(1-iodo-1-propen-3-yl)-α-phenylacetate. A new ligand for the potential imaging of muscarinic receptors by SPECT. J. Med. Chem. 36, 848–854.

    Article  PubMed  CAS  Google Scholar 

  39. McPherson, D. W., Lambert, C. R., Jahn, K., Sood, V., McRee, R. C., Zeeberg, B., et al. (1995) Resolution, in vitro and in vivo evaluation of isomers of iodine-125-labeled 1-azabicyclo[2.2.2]oct-3-yl α-hydroxy-α-(1-iodo-1-propen-3-yl)-α-phenylacetate (IQNP). A high affinity ligand for the muscarinic receptor. J. Med. Chem. 38, 3908–3917.

    Article  PubMed  CAS  Google Scholar 

  40. Rayeq, M. R., Boulay, S. F., Sood, V. K., McPherson, D. W., Knapp, F. F., Jr., Zeeberg, B. R., and Reba, R. C. (1996) In vivo autoradiographic evaluation of isomers of I-125-labeled 1-azabicyclo[2.2.2.]oct-3-yl α-hydroxy-α-(1-iodo-1-propen-3-yl)-α-phenylacetate (IQNP). Direct evidence for enhanced in vivo M2 muscarinic subtype selectivity for Z-(-) (-)-[125I]-IQNP. Receptors Signal Transduction 6, 13–34.

    PubMed  CAS  Google Scholar 

  41. McPherson, D. W., Greenbaum, M., Luo, H., Beets, A. L., and Knapp, F. F., Jr. (2000) Evaluation of Z-(R,R)-IQNP for the potential imaging of the m2 mAChR rich regions of the brain and heart. Life Sci. 66, 885–896.

    Article  PubMed  CAS  Google Scholar 

  42. Bergstrom, K. A., Halldin, C., Hiltunen, J., Swahn, C. G., Ito, H., Ginovert, N., et al. (1998) I-125 and I-123-labeled E-(-,-)-IQNP: potential radioligand for visualization of M1 acetylcholinergic receptors in brain. Determination of metabolites using HPLC. Nucl. Med. Biol. 25, 209–214.

    Article  PubMed  CAS  Google Scholar 

  43. Bergstrom, K., Halldin, C., Savonen, A., Okubo, Y., Hiltunen, J., Nobuhara, K., et al. (1999) Iodine-123 labelled Z-(R,R)-IQNP: A potential radioligand for visualization of M1 and M2 muscarinic acetylcholine receptors in Alzheimer’s disease. Eur. J. Nucl. Med. 26, 1482–485.

    Article  PubMed  CAS  Google Scholar 

  44. Nobuhara, K., Halldin, C., Hall, H., Karlsson, P., Farde, L., Hiltunen, J., et al. (2000) Z-IQNP: A potential radioligand for SPECT imaging of muscarinic acetylcholine receptors in Alzheimer’s disease. Pyschopharmacology (Berl.) 149(1), 45–55.

    Article  CAS  Google Scholar 

  45. Nobuhara, K., Farde, L., Halldin, C., Karlsson, P., Swahn, C. G., Olsson, H., et al. (2000) SPECT imaging of central muscarinic acetylcholine receptors with iodine-123 labelled E-IQNP and Z-IQNP. Eur. J. Nucl. Med, in press.

    Google Scholar 

  46. Vora, M. M., Finn, R. D., Boothe, T. E., Liskwosky, D. R., and Potter, L. T. (1983) [N-Methyl-11C]scopolamine: synthesis and distribution in rat brain. J. Labelled Comp. Rad. 20, 1229–1236.

    Article  CAS  Google Scholar 

  47. Frey, K. A., Koeppe, R. A., Mulholland, G. K., Jewett, D., Hichwa, R., Ehrenkaufer, R. L. E., et al. (1992) In vivo muscarinic cholinergic receptor imaging in human brain with [11C]scopolamine and positron emission tomography. J. Cereb. Blood Flow Metab. 12, 147–154.

    PubMed  CAS  Google Scholar 

  48. Varastet, M., Brouillet, E., Chavoix, C., Prenant, C., Crouzel, C., Stulzaft, O., et al. (1992) In vivo visualization of cerebral muscarinic receptors using [11C]quinuclidinyl benzilate and positron emission tomography in baboons. Eur. J. Pharmacol. 213, 275–284.

    Article  PubMed  CAS  Google Scholar 

  49. Dannals, R. F., Langstrom, B., Ravert, H. T., Wilson, A. A., and Wagner, H. N., Jr. (1988) Synthesis of radiotracers for studying muscarinic cholinergic receptors in the living human brain using positron emission tomography: [11C]dexetimide and [11C]levetimide. Appl. Radiat. Isot. 39, 291–295.

    Article  CAS  Google Scholar 

  50. Dewey, S. L., MacGregor, R. R., Brodie, J. D., Bendriem, B., King, P. T., Volkow, N. D., et al. (1990) Mapping muscarinic receptors in human and baboon brain using [N-11C-methyl]-benztropine. Synapse 5, 213–223.

    Article  PubMed  CAS  Google Scholar 

  51. Dewey, S. L., Volkow, N. D., Logan, J., MacGregor, R. R., Fowler, J. S., Schlyer, D. J., and Bendriem, B. (1990) Age-related decreases in muscarinic cholinergic receptor binding in the human brain measured with positron emission tomography (PET). J. Neurosci. Res. 27, 569–579.

    Article  PubMed  CAS  Google Scholar 

  52. Ono, S., Kawashima, R., Ito, H., Koyama, M., Goto, R., Inoue, K., et al. (1996) Regional distribution of the muscarinic cholinergic receptor in the human brain studies with 11C-benztropine and PET using an anatomical standardization technique. Kaku Igaku 33, 721–727.

    PubMed  CAS  Google Scholar 

  53. Mulholland, G. K., Otto, C. A., Jewett, D. M., Kilbourn, M. R., Koeppe, R. A., Sherman, P. S., et al. (1992) Synthesis, rodent biodistribution, dosimetry, metabolism, and monkey images of carbon-11-labeled (+)-2α tropanyl benzilate: A central muscarinic receptor imaging agent. J. Nucl. Med. 33, 423–430.

    PubMed  CAS  Google Scholar 

  54. Koeppe, R. A., Frey, K. A., Mulholland, G. K., Kilbourn, M. R., Buck, A., Lee, K. S., and Kuhl, D. E. (1994) [11C]Tropanyl benzilate-binding to muscarinic cholinergic receptors: methodology and kinetic modeling alternatives. J. Cereb. Blood Flow Metab. 14, 85–99.

    PubMed  CAS  Google Scholar 

  55. Lee, K. S., Frey, K. A., Koeppe, R. A., Buck, A., Mulholland, G. K., and Kuhl, D. E. (1996) In vivo quantification of cerebral muscarinic receptors in normal human aging using positron emission tomography and [11C]tropanyl benzilate. J. Cereb. Blood Flow Metab. 16, 303–310.

    Article  PubMed  CAS  Google Scholar 

  56. Mulholland, G. K., Kilbourn, M. R., Sherman, P., Carey, J. E., Frey, K. A., Koeppe, R. A., and Kuhl, D. E. (1995) Synthesis, in vivo biodistribution and dosimetry of [11C]N-methylpiperidinyl benzilate ([11C]NMPB), a muscarinic acetylcholine receptor antagonist. Nucl. Med. Biol. 22, 13–17.

    Article  PubMed  CAS  Google Scholar 

  57. Zubieta, J. K., Koeppe, R. A., Mulholland, G. K., Kuhl, D. E., and Frey, K. A. (1998) Quantification of muscarinic cholinergic receptors with [11C]NMPB and positron emission tomography: method development and differentiation of tracer delivery from receptor binding. J. Cereb. Blood Flow Metab. 18, 619–631.

    Article  PubMed  CAS  Google Scholar 

  58. Suhara, T., Inoue, O., Kobayashi, K., Suzuki, K., and Tateno, Y. (1993) Agerelated changes in human muscarinic acetylcholine receptors measured by positron emission tomography. Neurosci. Lett. 149, 225–228.

    Article  PubMed  CAS  Google Scholar 

  59. Suhara, T., Inoue, O., Kobayashi, K., Satoh, T., and Tateno, Y. (1994) An acute effect of triazolam on muscarinic cholinergic receptor binding in the human brain measured by positron emission tomography. Psychopharmacology (Berl.) 113, 311–317.

    Article  CAS  Google Scholar 

  60. Shinotoh, H., Asahina, M., Inoue, O., Suhara, T., Hirayama, K., and Tateno, Y. (1994) Effects of trihexyphenidyl and L-dopa on brain muscarinic cholinergic receptor binding measured by positron emission tomography. J. Neural. Transm. [P-D Sect] 7, 35–46.

    Article  CAS  Google Scholar 

  61. Asahina, M. and Shinotoh, H. (1997) Muscarinic cholinergic receptor imaging of parkinsonian brains using 11C-NMPB and PET. Nippon Rinsho. 55, 233–237.

    PubMed  CAS  Google Scholar 

  62. Yoshida, T., uwabara, Y., Ichiya, Y., Sasaki, M., Fukumura, T., Ichimiya, A., et al. (1998) Cerebral muscarinic acetylcholinergic receptor measurement in Alzheimer’s disease patients on 11C-N-methyl-4-piperidinyl benzilate. Comparison with cerebral blood flow and cerebral glucose metabolism. Ann. Nucl. Med. 12, 35–42.

    Article  PubMed  CAS  Google Scholar 

  63. Sudo, Y., Suhara, T., Honda, Y., Nakajima, T., Okubo, Y., Suzuki, K., et al. (1998) Muscarinic cholinergic receptors in human narcolepsy: a PET study. Neurology 51, 1297–1302.

    PubMed  CAS  Google Scholar 

  64. Takahashi, K., Murakami, S., Miura, S., Iida, H., Kanno, I., and Uemura, K. (1999) Synthesis and autoradiographic localization of muscarinic cholinergic antagonist (+)-N-methyl-3-piperidinyl benzilate as a potent radioligand for positron emission tomography. Appl. Rad. Isot. 50, 521–525.

    Article  CAS  Google Scholar 

  65. Wilson, A. A., Scheffel, U. A., Dannals, R. F., Stathis, M., Ravert, H. T., and Wagner, H. W., Jr. (1991) In vivo biodistribution of two [18F]-labelled muscarinic cholinergic receptor ligands: 2-[18F]-and 4-[18F]fluorodexetimide. Life Sci. 48, 1385–1394.

    Article  PubMed  CAS  Google Scholar 

  66. Luo, H., Beets, A. L., McAllister, M. J., Greenbaum, M., McPherson, D. W., and Knapp, F. F., Jr. (1998) Resolution, in vitro and in vivo evaluation of fluorine-18-labeled isomers of 1-azabicyclo[2.2.2]oct-3-yl α-fluoroalkyl-α-hydroxy-α-phenylacetate (FQNPe) as new PET candidates for the imaging of muscarinic-cholinergic receptor. J. Labelled Comp. Rad. 41, 681–704.

    Article  CAS  Google Scholar 

  67. Takahashi, K., Miura, S., Hatazawa, J., Shimosegawa, E., Kinoshita, T., Ito, H., et al. (1999) Synthesis of [18F]fluoroethyl-4-piperidinyl benzilate, a muscarinic receptor antagonist, for use in receptor activation studies with PET. J. Labelled Comp. Rad. 42, S497–S499.

    Article  Google Scholar 

  68. Doods, H., Entzeroth, M., Ziegler, H., Schiavi G., Engel, W., Mihm, G., et al. (1993) Characterization of BIBN 99: a lipophilic and selective muscarinic M2 receptor antagonist. Eur. J. Pharmacol. 242, 23–30.

    Article  PubMed  CAS  Google Scholar 

  69. Aubert, C., Perrio-Huard, C., and Lasne, M. C. (1997) Synthesis of [11C]BIBN 99, a new selective radioligand for the in vivo studies of M2 muscarinic receptors by PET. J. Labelled Comp. Rad. 40, 752–754.

    Google Scholar 

  70. Aubert, C., Perrio-Huard, C., and Lasne, M. C. (1997) Synthesis of [11C]BIBN 99, a new selective radioligand for the in vivo studies of M2 muscarinic receptors by PET. J. Labelled Comp. Rad. 40, 752–754.

    Google Scholar 

  71. McPherson, D. W., Breeden, W., Luo, H., Beets, A., and Knapp, F. F., (1998) Resolution, radiolabeling and in vivo evaluation of the isomers of IPIP. An attractive ligand for imaging mAChR. J. Nucl. Med. 39, 49.

    Google Scholar 

  72. McPherson, D., Halldin, C., Hall, H., Nobuhara, K., Sandell, J., Knapp, F.F., Jr., and Farde, L. (1999) Evaluation of carbon-11 labeled E-(R)-IPIP for the potential PET imaging of muscarinic receptors. J. Labelled Comp. Rad. 42, S378–S380.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc. Totowa, NJ

About this protocol

Cite this protocol

W. McPherson, D. (2001). Targeting Cerebral Muscarinic Acetylcholine Receptors with Radioligands for Diagnostic Nuclear Medicine Studies. In: Lopatin, A.N., Nichols, C.G. (eds) Ion Channel Localization. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1385/1-59259-118-3:17

Download citation

  • DOI: https://doi.org/10.1385/1-59259-118-3:17

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-833-2

  • Online ISBN: 978-1-59259-118-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics