Targeting Cerebral Muscarinic Acetylcholine Receptors with Radioligands for Diagnostic Nuclear Medicine Studies

  • Daniel W. McPherson
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Nerve cells communicate via the release of chemical messengers (neurotransmitters) which bind to a site (receptor) on another or the same cell causing an effect. The various neuroreceptor classes are responsible for important functions such as movement, memory, and learning. Naturally occurring neurotransmitters are agonists, molecules that trigger an effect in the target cell after binding to the receptor site. In most cases, the binding period of an agonist to the receptor is short and after release from the receptor, the agonist is rapidly taken up by the same nerve cell (reuptake) or metabolized by various bioenzymes. Antagonists are artificial “false” neurotransmitters that bind to a receptor, often with similar or higher affinity compared to an agonist, but do not cause an effect in the target receptor other than preventing the binding of the agonist. Typically, antagonists are designed to increase the binding affinity to the receptor site, to delay release from the receptor pocket, and inhibit the metabolism by bioenzymes.


Positron Emission Tomography Single Photon Emission Compute Tomography Single Photon Emission Compute Tomography Study Cerebral Region Positron Emission Tomography Imaging Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Burgen, A. S. V. (1995) The background of the muscarinic system. Life Sci. 11/ 12: 801–806.CrossRefGoogle Scholar
  2. 2.
    Mutschler, E., Moser, U., Wess, J., and Lambrecht, G. (1989) Muscarinic receptor subtypes: agonists and antagonists, in Progress in Pharmacology and Clinical Pharmacology, vol. 7/1, (Zwieten, P. A. and vanand-Schonbaum, E., eds.), Gustav Fischer Verlag, Stuttgart, pp. 13–31.Google Scholar
  3. 3.
    Buckley, N. J., Bonner, T. I., Buckley, C. M., and Brann, M. R. (1989) Antagonist binding properties of five cloned muscarinic receptors expresses in CHOK1 cells. Mol. Pharmacol. 35, 469–476.PubMedGoogle Scholar
  4. 4.
    Gainetdinov, P. R. and Caron, M. G. (1999) Delineating muscarinic receptor functions. Proc. Natl. Acad. Sci. USA 96, 12,222–12,223.PubMedCrossRefGoogle Scholar
  5. 5.
    Levey, A. I. (1993) Immunological localization of m1-m5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci. 52, 441–448.PubMedCrossRefGoogle Scholar
  6. 6.
    Levey, A. I. (1996) Muscarinic acetylcholine receptor expression in memory circuits: implications for treatment of Alzheimer disease. Proc. Natl. Acad. Sci. USA 93, 13,541–13,546.PubMedCrossRefGoogle Scholar
  7. 7.
    Brown, J. H. and Taylor, P. (1996) Muscarinic receptor agonists and antagonists, in The Pharmacological Basis of Therapeutics (Hardman, J. G. and Limbird, L. E., eds.), McGraw-Hill, NY, pp 141–160.Google Scholar
  8. 8.
    Baghdoyan, H. A. and Lydic, R. (1999) M2 muscarinic receptor subtype in the feline medial pontine reticular formation modulates the amount of rapid eye movement sleep. Sleep 22, 835–847.PubMedGoogle Scholar
  9. 9.
    Nordberg, A., Alaguzoff, I., and Winblad, B. (1992) Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J. Neurosci. Res. 31, 103–111.PubMedCrossRefGoogle Scholar
  10. 10.
    Freund, G. and Ballinger, W. E. (1991) Loss of synaptic receptors can precede morphologic changes induced by alcoholism. Alcohol Alcoholism (Suppl. 1), 385–391.Google Scholar
  11. 11.
    Kinney, H. C., Filiano, J. J., Sleeper, L. A., Mandel, L. F., Valdes-Dapena, M., and White, W. F. (1995) Decreased muscarinic receptor binding in the arcuate nucleus in sudden infant death syndrome. Science 269, 1446–1450.PubMedCrossRefGoogle Scholar
  12. 12.
    Nagren, K., Halldin, C., Muller, L., Swahn, C. G., and Lehikoinen, P. (1995) Comparison of [11C]methyl triflate and [11C]methyl iodide in the synthesis of PET radioligands such as [11C]beta-CIT and [11C]beta-CFT. Nucl. Med. Biol. 22, 965–979.PubMedCrossRefGoogle Scholar
  13. 13.
    Prenant, C., Barre, L., and Crouzel, C. (1989) Synthesis of [11C]-3-quinuclidinyl benzilate (QNB). J. Labelled Comp. Rad. 27, 1257–1265.CrossRefGoogle Scholar
  14. 14.
    Halldin, C., Farde, L., Hogberg, T., Hall, H., Strom, P., Ohlberger, A., and Solin, O. (1991) A comparative PET-study of five carbon-11 or fluorine-18 labelled salicylamindes. Preparation and in vitro dopamine D-2 receptor binding. Nucl. Med. Biol. 18, 871–881.Google Scholar
  15. 15.
    Lang, L., Jagoda, E., Schmall, B., Vuong, B. K., Adams, R., Nelson, D. L., Carson, R. E., and Eckelman, W. C. (1999) Development of fluorine-18-labeled 5HT1A antagonists. J. Med. Chem. 42, 1576–1586.PubMedCrossRefGoogle Scholar
  16. 16.
    Seevers, R. H. and Counsell, R. E. (1982) Radioiodination techniques for small organic molecules. Chem. Rev. 82, 575–590.CrossRefGoogle Scholar
  17. 17.
    Kampfer, I., Heinicke, J., Sorger, D., Schulze, K., Schliebs, R., and Knapp, W. H. (1996) Novel preparation of (R,R)bromo-3-quinuclidinyl benzilate (Br-QNB), a precursor for the synthesis of (R,R)[123I]iodo-QNB. J. Labelled Comp. Rad. 38, 1047–1052.CrossRefGoogle Scholar
  18. 18.
    Sternbach, L. H. and Kaiser, S. (1952) Antispasmodics. I. Bicyclic basic alcohols. J. Am. Chem. Soc. 74, 2215–2218.CrossRefGoogle Scholar
  19. 19.
    Beckett, A. H., Lan, N. T., and Khokhar, A. Q. (1971) Anti-acetylcholinesterase activity of some stereoisomeric aminoboranes. J. Pharm. Pharmacol. 23, 528–533.PubMedGoogle Scholar
  20. 20.
    Rzeszotarski, W. J., Eckelman, W. C., Francis, B. E., Simms, D. A., Gibson, R. E., Jagoda, E. M., et al. (1984) Synthesis and evaluation of radioiodinated derivatives of 1-azabicyclo[2.2.2]oct-3-yl α-hydroxy-α-(4-iodophenyl)-α-phenylacetate as potential radiopharmaceuticals. J. Med. Chem. 27, 156–159.PubMedCrossRefGoogle Scholar
  21. 21.
    Kiesewetter, D. O., Silverton, J. V., and Eckelman, W. C. (1995) Synthesis and biological properties of chiral fluoroalkyl quinuclidinyl benzilates. J. Med. Chem. 38, 1711–1719.PubMedCrossRefGoogle Scholar
  22. 22.
    Gibson, R.E. (1990) Muscarinic acetylcholine receptors, in Quantitative Imaging. Neuroreceptors, Neurotransmitters, and Enzymes (Frost, J. J., Wagner, H. N., Jr., eds.), Raven Press, Boston, MA, pp. 129–152.Google Scholar
  23. 23.
    Eckelman, W. C., Reba, R. C., Rzeszotarski, W. J., Gibson, R. E., Hill, T., Holman, B.L., et al. (1984) External imaging of cerebral muscarinic acetylcholine receptors. Science 223, 291–294.PubMedCrossRefGoogle Scholar
  24. 24.
    Holman, B. L., Gibson, R. E., Hill, T. C., Eckelman, W. C., Albert, M., and Reba, R. C. (1985) Muscarinic acetylcholine receptors in Alzheimer’s disease, in vivo imaging with iodine 123-labeled 3-quinuclidinyl 4-iodobenzilate and emission tomography. JAMA 254, 3063–3066.PubMedCrossRefGoogle Scholar
  25. 25.
    Weinburger, D. R., Gibson, R., Coppola, R., Jones, D. W., Molchan, S., Sunderland, T., et al. (1991) The distribution of cerebral muscarinic acetylcholine receptors in vivo in patients with dementia. A controlled study with 123IQNB and single photon emission computed tomography. Arch. Neurol. 48, 169–176.Google Scholar
  26. 26.
    Owens, J., Murray, T., McCulloch, J., and Wyper, W. (1992) Synthesis of (R,R)-[123I]-QNB, a SPECT imaging agent for cerebral muscarinic acetylcholine receptors in vivo. J. Labelled Comp. Rad. 31, 45–60.CrossRefGoogle Scholar
  27. 27.
    Weinburger, D. R., Jones, D., Reba, R. C., Mann, U., Coppola, R., Gibson, R., et al. (1992) A comparison of FDG PET and IQNB SPECT in normal subjects and in patients with dementias. J. Neuropsychiatry Clin. Neursci. 4, 239–248.Google Scholar
  28. 28.
    Wyper, J., Brown, D., Patterson, J., Owens, J., Hunter, R., Teasdale, E., and McCulloch, J. (1993) Deficits in iodine-labelled 3-quinuclidinyl benzilate binding in relation to cerebral blood flow in patients with Alzheimer’s disease. Eur. J. Nucl. Med. 20, 379–386.PubMedCrossRefGoogle Scholar
  29. 29.
    Sunderland, T., Esposito, G., Molchan, S. E., Coppola, R., Jones, D. W., Gorey, J., et al. (1995) Differential cholinergic regulation in Alzheimer’s patients compared to controls following chronic blockade with scopolamine: a SPECT study. Psychopharmacology 121, 231–241.PubMedCrossRefGoogle Scholar
  30. 30.
    Laduron, P. M. and Janssen, P. F. M. (1979) Characterization and subcellular localization of brain muscarinic receptors labelled in vivo by [3H]dexetimide. J. Neurochem. 33, 1223–1231.PubMedCrossRefGoogle Scholar
  31. 31.
    Wilson, A. A., Dannals, R. F., Ravert, H. T., Frost, J. J., and Wagner, H. N., Jr. (1989) Synthesis and biological evaluation of [125I]-and [123I]-4-iododexetimde, a potent muscarinic cholinergic receptor antagonist. J. Med. Chem. 32, 1057–1062.PubMedCrossRefGoogle Scholar
  32. 32.
    Boundy, K. L., Barnden, L. R., Rowe, C. C., Reid, M., Kassiou, M., Katsifis, A. G., and Lambrecht, R. M. (1995) Human dosimetry and biodistribution of iodine-123-iododexetimide: a SPECT imaging agent for cholinergic muscarinic neuroreceptors. J. Nucl. Med. 36, 1332–1338.PubMedGoogle Scholar
  33. 33.
    Muller-Gartner, H. W., Wilson, A. A., Dannals, R. F., Wagner, H. N., Jr., and Frost, J. J. (1992) Imaging muscarinic cholinergic receptors in human brain in vivo with SPECT, [I-123]-4-iododexetimide and [I-123]-4-iodolevetimide. J. Cereb. Blood Flow Metab. 12, 562–570.PubMedGoogle Scholar
  34. 34.
    Muller-Gartner, H. W., Mayberg, H. S., Fisher, R. S., Lesser, R. P., Wilson, A. A., Ravert, H. T., et al. (1993) Decreased hippocampal muscarinic cholinergic receptor-binding measured by I-123 iododexetimide and single photon emission computed tomography in epilepsy. Ann. Neurol. 34, 235–238.PubMedCrossRefGoogle Scholar
  35. 35.
    Boundy, K. L., Rowe, C. C., Black, A. B., Kitchener, M. I., Barnden, L. R., Sebben, R., et al. (1996) Localization of temporal lobe epileptic foci with iodine-123 iododexetimide cholinergic neuroreceptor single-photon emission computed tomography. Neurology 47, 1015–1020.PubMedGoogle Scholar
  36. 36.
    Weckesser, M., Hufnagel, A., Ziemons, K., Griessmeier, M., Sonnenberg, F., Hacklander, T., et al. (1997) Effect of partial volume correction on muscarinic cholinergic receptor imaging with single-photon emission tomography in patients with temporal lobe epilepsy. Eur. J. Nucl. Med. 24, 1156–1161.PubMedGoogle Scholar
  37. 37.
    Claus, J. J., Dubois, E. A., Booij, J., Habraken, J., de Munck, J. C., van Herk, M., et al. (1997) Demonstration of a reduction in muscarinic receptor binding in early Alzheimer’s disease using iodine-123 dexetimide single-photon emission tomography. Eur. J. Nucl. Med. 24, 602–608.PubMedGoogle Scholar
  38. 38.
    McPherson, D. W., DeHaven-Hudkins, D. L., Callahan, A. P., and Knapp, F. F., Jr. (1993) Synthesis and biodistribution of iodine-125-labeled 1-azabicyclo[2.2.2]oct-3-yl α-hydroxy-α-(1-iodo-1-propen-3-yl)-α-phenylacetate. A new ligand for the potential imaging of muscarinic receptors by SPECT. J. Med. Chem. 36, 848–854.PubMedCrossRefGoogle Scholar
  39. 39.
    McPherson, D. W., Lambert, C. R., Jahn, K., Sood, V., McRee, R. C., Zeeberg, B., et al. (1995) Resolution, in vitro and in vivo evaluation of isomers of iodine-125-labeled 1-azabicyclo[2.2.2]oct-3-yl α-hydroxy-α-(1-iodo-1-propen-3-yl)-α-phenylacetate (IQNP). A high affinity ligand for the muscarinic receptor. J. Med. Chem. 38, 3908–3917.PubMedCrossRefGoogle Scholar
  40. 40.
    Rayeq, M. R., Boulay, S. F., Sood, V. K., McPherson, D. W., Knapp, F. F., Jr., Zeeberg, B. R., and Reba, R. C. (1996) In vivo autoradiographic evaluation of isomers of I-125-labeled 1-azabicyclo[2.2.2.]oct-3-yl α-hydroxy-α-(1-iodo-1-propen-3-yl)-α-phenylacetate (IQNP). Direct evidence for enhanced in vivo M2 muscarinic subtype selectivity for Z-(-) (-)-[125I]-IQNP. Receptors Signal Transduction 6, 13–34.PubMedGoogle Scholar
  41. 41.
    McPherson, D. W., Greenbaum, M., Luo, H., Beets, A. L., and Knapp, F. F., Jr. (2000) Evaluation of Z-(R,R)-IQNP for the potential imaging of the m2 mAChR rich regions of the brain and heart. Life Sci. 66, 885–896.PubMedCrossRefGoogle Scholar
  42. 42.
    Bergstrom, K. A., Halldin, C., Hiltunen, J., Swahn, C. G., Ito, H., Ginovert, N., et al. (1998) I-125 and I-123-labeled E-(-,-)-IQNP: potential radioligand for visualization of M1 acetylcholinergic receptors in brain. Determination of metabolites using HPLC. Nucl. Med. Biol. 25, 209–214.PubMedCrossRefGoogle Scholar
  43. 43.
    Bergstrom, K., Halldin, C., Savonen, A., Okubo, Y., Hiltunen, J., Nobuhara, K., et al. (1999) Iodine-123 labelled Z-(R,R)-IQNP: A potential radioligand for visualization of M1 and M2 muscarinic acetylcholine receptors in Alzheimer’s disease. Eur. J. Nucl. Med. 26, 1482–485.PubMedCrossRefGoogle Scholar
  44. 44.
    Nobuhara, K., Halldin, C., Hall, H., Karlsson, P., Farde, L., Hiltunen, J., et al. (2000) Z-IQNP: A potential radioligand for SPECT imaging of muscarinic acetylcholine receptors in Alzheimer’s disease. Pyschopharmacology (Berl.) 149(1), 45–55.CrossRefGoogle Scholar
  45. 45.
    Nobuhara, K., Farde, L., Halldin, C., Karlsson, P., Swahn, C. G., Olsson, H., et al. (2000) SPECT imaging of central muscarinic acetylcholine receptors with iodine-123 labelled E-IQNP and Z-IQNP. Eur. J. Nucl. Med, in press.Google Scholar
  46. 46.
    Vora, M. M., Finn, R. D., Boothe, T. E., Liskwosky, D. R., and Potter, L. T. (1983) [N-Methyl-11C]scopolamine: synthesis and distribution in rat brain. J. Labelled Comp. Rad. 20, 1229–1236.CrossRefGoogle Scholar
  47. 47.
    Frey, K. A., Koeppe, R. A., Mulholland, G. K., Jewett, D., Hichwa, R., Ehrenkaufer, R. L. E., et al. (1992) In vivo muscarinic cholinergic receptor imaging in human brain with [11C]scopolamine and positron emission tomography. J. Cereb. Blood Flow Metab. 12, 147–154.PubMedGoogle Scholar
  48. 48.
    Varastet, M., Brouillet, E., Chavoix, C., Prenant, C., Crouzel, C., Stulzaft, O., et al. (1992) In vivo visualization of cerebral muscarinic receptors using [11C]quinuclidinyl benzilate and positron emission tomography in baboons. Eur. J. Pharmacol. 213, 275–284.PubMedCrossRefGoogle Scholar
  49. 49.
    Dannals, R. F., Langstrom, B., Ravert, H. T., Wilson, A. A., and Wagner, H. N., Jr. (1988) Synthesis of radiotracers for studying muscarinic cholinergic receptors in the living human brain using positron emission tomography: [11C]dexetimide and [11C]levetimide. Appl. Radiat. Isot. 39, 291–295.CrossRefGoogle Scholar
  50. 50.
    Dewey, S. L., MacGregor, R. R., Brodie, J. D., Bendriem, B., King, P. T., Volkow, N. D., et al. (1990) Mapping muscarinic receptors in human and baboon brain using [N-11C-methyl]-benztropine. Synapse 5, 213–223.PubMedCrossRefGoogle Scholar
  51. 51.
    Dewey, S. L., Volkow, N. D., Logan, J., MacGregor, R. R., Fowler, J. S., Schlyer, D. J., and Bendriem, B. (1990) Age-related decreases in muscarinic cholinergic receptor binding in the human brain measured with positron emission tomography (PET). J. Neurosci. Res. 27, 569–579.PubMedCrossRefGoogle Scholar
  52. 52.
    Ono, S., Kawashima, R., Ito, H., Koyama, M., Goto, R., Inoue, K., et al. (1996) Regional distribution of the muscarinic cholinergic receptor in the human brain studies with 11C-benztropine and PET using an anatomical standardization technique. Kaku Igaku 33, 721–727.PubMedGoogle Scholar
  53. 53.
    Mulholland, G. K., Otto, C. A., Jewett, D. M., Kilbourn, M. R., Koeppe, R. A., Sherman, P. S., et al. (1992) Synthesis, rodent biodistribution, dosimetry, metabolism, and monkey images of carbon-11-labeled (+)-2α tropanyl benzilate: A central muscarinic receptor imaging agent. J. Nucl. Med. 33, 423–430.PubMedGoogle Scholar
  54. 54.
    Koeppe, R. A., Frey, K. A., Mulholland, G. K., Kilbourn, M. R., Buck, A., Lee, K. S., and Kuhl, D. E. (1994) [11C]Tropanyl benzilate-binding to muscarinic cholinergic receptors: methodology and kinetic modeling alternatives. J. Cereb. Blood Flow Metab. 14, 85–99.PubMedGoogle Scholar
  55. 55.
    Lee, K. S., Frey, K. A., Koeppe, R. A., Buck, A., Mulholland, G. K., and Kuhl, D. E. (1996) In vivo quantification of cerebral muscarinic receptors in normal human aging using positron emission tomography and [11C]tropanyl benzilate. J. Cereb. Blood Flow Metab. 16, 303–310.PubMedCrossRefGoogle Scholar
  56. 56.
    Mulholland, G. K., Kilbourn, M. R., Sherman, P., Carey, J. E., Frey, K. A., Koeppe, R. A., and Kuhl, D. E. (1995) Synthesis, in vivo biodistribution and dosimetry of [11C]N-methylpiperidinyl benzilate ([11C]NMPB), a muscarinic acetylcholine receptor antagonist. Nucl. Med. Biol. 22, 13–17.PubMedCrossRefGoogle Scholar
  57. 57.
    Zubieta, J. K., Koeppe, R. A., Mulholland, G. K., Kuhl, D. E., and Frey, K. A. (1998) Quantification of muscarinic cholinergic receptors with [11C]NMPB and positron emission tomography: method development and differentiation of tracer delivery from receptor binding. J. Cereb. Blood Flow Metab. 18, 619–631.PubMedCrossRefGoogle Scholar
  58. 58.
    Suhara, T., Inoue, O., Kobayashi, K., Suzuki, K., and Tateno, Y. (1993) Agerelated changes in human muscarinic acetylcholine receptors measured by positron emission tomography. Neurosci. Lett. 149, 225–228.PubMedCrossRefGoogle Scholar
  59. 59.
    Suhara, T., Inoue, O., Kobayashi, K., Satoh, T., and Tateno, Y. (1994) An acute effect of triazolam on muscarinic cholinergic receptor binding in the human brain measured by positron emission tomography. Psychopharmacology (Berl.) 113, 311–317.CrossRefGoogle Scholar
  60. 60.
    Shinotoh, H., Asahina, M., Inoue, O., Suhara, T., Hirayama, K., and Tateno, Y. (1994) Effects of trihexyphenidyl and L-dopa on brain muscarinic cholinergic receptor binding measured by positron emission tomography. J. Neural. Transm. [P-D Sect] 7, 35–46.CrossRefGoogle Scholar
  61. 61.
    Asahina, M. and Shinotoh, H. (1997) Muscarinic cholinergic receptor imaging of parkinsonian brains using 11C-NMPB and PET. Nippon Rinsho. 55, 233–237.PubMedGoogle Scholar
  62. 62.
    Yoshida, T., uwabara, Y., Ichiya, Y., Sasaki, M., Fukumura, T., Ichimiya, A., et al. (1998) Cerebral muscarinic acetylcholinergic receptor measurement in Alzheimer’s disease patients on 11C-N-methyl-4-piperidinyl benzilate. Comparison with cerebral blood flow and cerebral glucose metabolism. Ann. Nucl. Med. 12, 35–42.PubMedCrossRefGoogle Scholar
  63. 63.
    Sudo, Y., Suhara, T., Honda, Y., Nakajima, T., Okubo, Y., Suzuki, K., et al. (1998) Muscarinic cholinergic receptors in human narcolepsy: a PET study. Neurology 51, 1297–1302.PubMedGoogle Scholar
  64. 64.
    Takahashi, K., Murakami, S., Miura, S., Iida, H., Kanno, I., and Uemura, K. (1999) Synthesis and autoradiographic localization of muscarinic cholinergic antagonist (+)-N-methyl-3-piperidinyl benzilate as a potent radioligand for positron emission tomography. Appl. Rad. Isot. 50, 521–525.CrossRefGoogle Scholar
  65. 65.
    Wilson, A. A., Scheffel, U. A., Dannals, R. F., Stathis, M., Ravert, H. T., and Wagner, H. W., Jr. (1991) In vivo biodistribution of two [18F]-labelled muscarinic cholinergic receptor ligands: 2-[18F]-and 4-[18F]fluorodexetimide. Life Sci. 48, 1385–1394.PubMedCrossRefGoogle Scholar
  66. 66.
    Luo, H., Beets, A. L., McAllister, M. J., Greenbaum, M., McPherson, D. W., and Knapp, F. F., Jr. (1998) Resolution, in vitro and in vivo evaluation of fluorine-18-labeled isomers of 1-azabicyclo[2.2.2]oct-3-yl α-fluoroalkyl-α-hydroxy-α-phenylacetate (FQNPe) as new PET candidates for the imaging of muscarinic-cholinergic receptor. J. Labelled Comp. Rad. 41, 681–704.CrossRefGoogle Scholar
  67. 67.
    Takahashi, K., Miura, S., Hatazawa, J., Shimosegawa, E., Kinoshita, T., Ito, H., et al. (1999) Synthesis of [18F]fluoroethyl-4-piperidinyl benzilate, a muscarinic receptor antagonist, for use in receptor activation studies with PET. J. Labelled Comp. Rad. 42, S497–S499.CrossRefGoogle Scholar
  68. 68.
    Doods, H., Entzeroth, M., Ziegler, H., Schiavi G., Engel, W., Mihm, G., et al. (1993) Characterization of BIBN 99: a lipophilic and selective muscarinic M2 receptor antagonist. Eur. J. Pharmacol. 242, 23–30.PubMedCrossRefGoogle Scholar
  69. 69.
    Aubert, C., Perrio-Huard, C., and Lasne, M. C. (1997) Synthesis of [11C]BIBN 99, a new selective radioligand for the in vivo studies of M2 muscarinic receptors by PET. J. Labelled Comp. Rad. 40, 752–754.Google Scholar
  70. 69.
    Aubert, C., Perrio-Huard, C., and Lasne, M. C. (1997) Synthesis of [11C]BIBN 99, a new selective radioligand for the in vivo studies of M2 muscarinic receptors by PET. J. Labelled Comp. Rad. 40, 752–754.Google Scholar
  71. 71.
    McPherson, D. W., Breeden, W., Luo, H., Beets, A., and Knapp, F. F., (1998) Resolution, radiolabeling and in vivo evaluation of the isomers of IPIP. An attractive ligand for imaging mAChR. J. Nucl. Med. 39, 49.Google Scholar
  72. 72.
    McPherson, D., Halldin, C., Hall, H., Nobuhara, K., Sandell, J., Knapp, F.F., Jr., and Farde, L. (1999) Evaluation of carbon-11 labeled E-(R)-IPIP for the potential PET imaging of muscarinic receptors. J. Labelled Comp. Rad. 42, S378–S380.Google Scholar

Copyright information

© Humana Press Inc. Totowa, NJ 2001

Authors and Affiliations

  • Daniel W. McPherson
    • 1
  1. 1.Nuclear Medicine Group, Life Sciences DivisionOak Ridge National LaboratoryOak Ridge

Personalised recommendations