Advertisement

Bicistronic GFP Expression Vectors as a Tool to Study Ion Channels in Transiently Transfected Cultured Cells

  • Jan Eggermont
  • Dominique Trouet
  • Gunnar Buyse
  • Rudi Vennekens
  • Guy Droogmans
  • Bernd Nilius
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

The availability of ion-channel cDNAs has greatly increased our insight in the structure, function, pharmacology, and regulation of ion channels at the molecular level. Much of this knowledge has been obtained by expressing wild-type or mutant ion channels in a heterologous host system, thereby facilitating functional approaches and analyses, which are not possible, when the native channel is studied in its in situ context (1).

Keywords

Green Fluorescent Protein Internal Ribosomal Entry Site Green Fluorescent Protein Expression Transcription Unit Green Fluorescent Protein Fluorescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Whiting, P. J., Wafford, K. A., Pribilla, I., and Petri, T. (1995) Channel cloning, mutagenesis and expression, in Ion channels. A Practical Approach (Ashley, R. H., ed.), IRL Press, Oxford, pp. 133–169.Google Scholar
  2. 2.
    Nilius, B., Eggermont, J., Voets, T., Buyse, G., Manolopoulos, V., and Droogmans, G. (1997) Properties of volume-regulated anion channels in mammalian cells. Prog. Biophys. Molec. Biol. 68, 69–119.CrossRefGoogle Scholar
  3. 3.
    Weber, W. M. (1999) endogenous ion channels in oocytes of Xenopus laevis: recent developments. J. Membrane Biol. 170, 1–12.CrossRefGoogle Scholar
  4. 4.
    Pasyk, E. A., Morin, X. K., Zeman, P., Garami, E., Galley, K., Huan, L. J., Wang, Y., and Bear, C. E. (1998) A conserved region of the R domain of cystic fibrosis transmembrane conductance regulator is important in processing and function. J. Biol. Chem. 273, 31759–31764.PubMedCrossRefGoogle Scholar
  5. 5.
    Smit, L. S., Strong, T. V., Wilkinson, D. J., Macek, M. J., Mansoura, M. K., Wood, D. L., et al. (1995) Missense mutation (G480C) in the CFTR gene associated with protein mislocalization but normal chloride channel activity. Hum. Molec. Genet. 4, 269–273.PubMedCrossRefGoogle Scholar
  6. 6.
    Madeja, M., Musshoff, U., and Speckmann, E. J. (1997) Follicular tissues reduce drug effects on ion channels in oocytes of Xenopus laevis. Eur. J. Neurosci. 9, 599–604.PubMedCrossRefGoogle Scholar
  7. 7.
    Krafte, D. S., Davison, K., Dugrenier, N., Estep, K., Josef, K., Barchi, R. L., et al. (1994) Pharmacological modulation of human cardiac Na+ channels. Eur. J. Pharmacol. 266, 245–254.PubMedCrossRefGoogle Scholar
  8. 8.
    Stefani, E. and Bezanilla, F. (1998) Cut-open oocyte voltage-clamp technique. Methods Enzymol. 293, 300–318.PubMedCrossRefGoogle Scholar
  9. 9.
    Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C.(1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.PubMedCrossRefGoogle Scholar
  10. 10.
    Heim, R., Prasher, D. C., and Tsien, R. Y. (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91, 12,501–12,504.PubMedCrossRefGoogle Scholar
  11. 11.
    Tsien, R. W. (1998) Key clockwork component cloned. Nature 391, 839,840.PubMedCrossRefGoogle Scholar
  12. 12.
    Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T., and Nishimune, Y. (1997) Green mice as a source of ubiquitous green cells. FEBS Lett. 407, 313–319.PubMedCrossRefGoogle Scholar
  13. 13.
    Tsien, R. Y. (1998) The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544.PubMedCrossRefGoogle Scholar
  14. 14.
    Heim, R., Cubitt, A. B., and Tsien, R. Y. (1995) Improved green fluorescence. Nature 373, 664,665.CrossRefGoogle Scholar
  15. 15.
    Cormack, B. P., Valvidia, R. H., and Falkow, S. (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38.PubMedCrossRefGoogle Scholar
  16. 16.
    Marshall, J., Molloy, R., Moss, G. W. J., Howe, J. R., and Hughes, T. E. (1995) The jellyfish green fluorescent protein: a new tool for studying ion channel expression and function. Neuron 14, 211–215.PubMedCrossRefGoogle Scholar
  17. 17.
    Levitan, E. S. (1999) Tagging potassium ion channels with green fluorescent protein to study mobility and interactions with other proteins. Methods Enzymol. 294, 47–58.PubMedCrossRefGoogle Scholar
  18. 18.
    Lopatin, A. N., Makhina, E. N., and Nichols, C. G. (1998) Novel tools for localizing ion channels in living cells. Trends Pharmacol. Sci. 19, 395–398.PubMedCrossRefGoogle Scholar
  19. 19.
    Gray, N. K. and Wickens, M. (1998) Control of translation initiation in animals. Annu. Rev. Cell Dev. Biol. 14, 399–458.PubMedCrossRefGoogle Scholar
  20. 20.
    Jackson, R. J. and Kaminski, A.(1995) Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA 1, 985–1000.PubMedGoogle Scholar
  21. 21.
    Stewart, S. R. and Semler, B. L.(1997) RNA determinants of picornavirus cap-independent translation initiation. Sem. Virol. 8, 242–255.CrossRefGoogle Scholar
  22. 22.
    Pestova, T. V., Shatsky, I. N., and Hellen, C. U. (1996) Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Mol. Cell. Biol. 16, 6870–6878.PubMedGoogle Scholar
  23. 23.
    Roberts, L. O., Seamons, R. A., and Belsham, G. J. (1998) Recognition of picornavirus internal ribosome entry sites within cells; influence of cellular and viral proteins. RNA 4, 520–529.PubMedCrossRefGoogle Scholar
  24. 24.
    Jang, S. K., Davies, M. V., Kaufman, R. J., and Wimmer, E. (1989) Initiation of protein synthesis by internal entry of ribosomes into the 5− nontranslated region of encephalomyocarditis virus RNA in vivo. J. Virol. 63, 1651–1660.PubMedGoogle Scholar
  25. 25.
    Ghattas, I. R., Sanes, J. R., and Majors, J. E. (1991) The encephalomyocarditis virus internal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos. Mol. Cell. Biol. 11, 5848–5859.PubMedGoogle Scholar
  26. 26.
    Kim, D. G., Kang, H. M., Jang, S. K., and Shin, H. S. (1992) Construction of a bifunctional mRNA in the mouse by using the internal ribosomal entry site of the encephalomyocarditis virus. Mol. Cell. Biol. 12, 3636–3643.PubMedGoogle Scholar
  27. 27.
    Borman, A. M., Bailly, J. L., Girard, M., and Kean, K. M. (1995) Picornavirus internal ribosome entry segments: comparison of translation efficiency and the requirements for optimal internal initiation of translation in vitro. Nucleic Acids Res. 23, 3656–3663.PubMedCrossRefGoogle Scholar
  28. 28.
    Trouet, D., Nilius, B., Voets, T., Droogmans, G., and Eggermont, J.(1997) Use of a bicistronic GFP-expression vector to characterise ion channels after transfection in mammalian cells. Pflügers Arch. Eur. J. Physiol. 434, 632–638.CrossRefGoogle Scholar
  29. 29.
    Blair, L. A. C., Bence, K. K., and Marshall, J. (1999) Jellyfish green fluorescent protein: a tool for studying ion channels and second messenger sgnaling in neurons. Methods Enzymol. 302, 213–225.PubMedCrossRefGoogle Scholar
  30. 30.
    Warnat, J., Philipp, S., Zimmer, S., Flockerzi, V., and Cavalie, A. (1999) Phenotype of a recombinant store-operated channel: highly selective permeation of Ca2+. J. Physiol. (Lond.) 518, 631–638.CrossRefGoogle Scholar
  31. 31.
    Kamouchi, M., Philipp, S., Flockerzi, V., Wissenbach, U., Mamin, A., Raeymaekers, L., et al. (1999) Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. J. Physiol. (Lond.) 518, 345–358.CrossRefGoogle Scholar
  32. 32.
    Kamouchi, M., Trouet, D., DeGreef, C., Droogmans, G., Eggermont, J., and Nilius, B. (1997) Functional effects of expression of hslo Ca2+ activated K+ channels in cultured macrovascular endothelial cells. Cell Calcium 22(6), 497–506.PubMedCrossRefGoogle Scholar
  33. 33.
    Vennekens, R., Kamouchi, M., Wissenbach, U., Phillip, S., Eggermont, J., Droogmans, G., et al. (1999) Functional expression of Trp1 and Trp4 in vascular endothelium. Pflügers Arch. Eur. J. Physiol. 437, R42.Google Scholar
  34. 34.
    Vennekens, R., Trouet, D., Vankeerberghen, A., Voets, T., Cuppens, H., Eggermont, J., et al. (1999) Inhibition of volume-regulated anion channels by expression of the cystic fibrosis transmembrane conductance regulator. J. Physiol. (Lond.) 515, 75–85.CrossRefGoogle Scholar
  35. 35.
    Fang, Y., Huang, C.-C., Kain, S. R., and Li, X. (1999) Use of coexpressed enhanced green fluorescent protein as a marker for identifying transfected cells. Methods Enzymol. 302, 207–212.PubMedCrossRefGoogle Scholar
  36. 36.
    Gossen, M., Freundlieb, S., Bender, G., Müller, G., Hillen, W., and Bujard, H. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769.PubMedCrossRefGoogle Scholar
  37. 37.
    Baron, U., Freundlieb, S., Gossen, M., and Bujard, H. (1995) Co-regulation of two gene activities by tetracycline via a bidirectional promoter. Nucleic Acids Res. 23, 3605–3606.PubMedCrossRefGoogle Scholar
  38. 38.
    Voets, T., Droogmans, G., and Nilius, B. (1996) Membrane currents and the resting membrane potential in cultured bovine pulmonary artery endothelial cells. J. Physiol. (Lond.) 497, 95–107.Google Scholar
  39. 39.
    Trouet, D., Nilius, B., Jacobs, A., Remacle, C., Droogmans, G., and Eggermont, J. (1999) Caveolin-1 modulates the activity of the volume-regulated chloride channel. J. Physiol. (Lond.) 520, 113–119.CrossRefGoogle Scholar
  40. 40.
    Smith, G. M., Berry, R. L., Yang, J., and Tanelian, D. (1997) Electrophysiological analysis of dorsal root ganglion neurons pre-and post-coexpression of green fluorescent protein and functional 5-HT3 receptor. J. Neurophysiol. 77, 3115–3121.PubMedGoogle Scholar
  41. 41.
    Buyse, G., Trouet, D., Voets, T., Missiaen, L., Droogmans, G., Nilius, B., and Eggermont, J. (1998) Evidence for the intracellular location of chloride chan nel (ClC)-type proteins: co-localization of CIC-6a and CIC-6c with the sarco/ endoplasmic-reticulum Ca2+ pump SERCA2b. Biochem. J. 330, 1015–1021.PubMedGoogle Scholar
  42. 42.
    Wei, L., Vankeerberghen, A., Cuppens, H., Droogmans, G., Cassiman, J.-J., and Nilius, B. (1999) Phosphorylation site independent single R-domain mutations affect CFTR channel activity. FEBS Lett. 439, 121–126.CrossRefGoogle Scholar
  43. 43.
    Voets, T., Droogmans, G., Raskin, G., Eggermont, J., and Nilius, B. (1999) Reduced intracellular ionic strength as the initial trigger for activation of endothelial volume-regulated anion channels. Proc. Natl. Acad. Sci. USA 96, 5298–5303.PubMedCrossRefGoogle Scholar
  44. 44.
    Van Driessche, W., De Smet, P., and Raskin, G. (1993) An automatic monitoring system for epithelial cell height. Pflügers Arch. Eur. J. Physiol. 425, 164–171.CrossRefGoogle Scholar
  45. 45.
    Gurtu, V., Yan, G., and Zhang, G. (1996) IRES bicistronic expression vectors for efficient creation of stable mammalian cell lines. Biochem. Biophys. Res. Commun. 229, 295–298.PubMedCrossRefGoogle Scholar
  46. 46.
    Rees, S., Coote, J., Stables, J., Goodson, S., Harris, S., and Lee, M. G. (1996) Bicistronic vector for the creation of stable mammalian cell lines that predisposes all antibiotic-resistant cells to express recombinant protein. BioTechniques 20, 102–110.PubMedGoogle Scholar
  47. 47.
    Hobbs, S., Jitrapakdee, S., and Wallace, J. C. (1998) Development of a bicistronic vector driven by the human polypeptide chain elongation factor 1alpha promoter for creation of stable mammalian cell lines that express very high levels of recombinant proteins. Biochem. Biophys. Res. Commun. 252, 368–372.PubMedCrossRefGoogle Scholar
  48. 48.
    Metz, M. Z., Pichler, A., Kuchler, K., and Kane, S. E. (1998) Construction and characterization of single-transcript tricistronic retroviral vectors using two internal ribosome entry sites. Somatic Cell Mol. Genet. 24, 53–69.CrossRefGoogle Scholar
  49. 49.
    Lybarger, L., Dempsey, D., Franek, K. J., and Chervenak, R. (1996) Rapid generation and flow cytometric analysis of stable GFP-expressing cells. Cytometry 25, 211–220.PubMedCrossRefGoogle Scholar
  50. 50.
    Walker, D. and De Waard, M. (1998) Subunit interaction sites in voltage-dependent Ca2+ channels: role in channel function. Trends Neurosci. 21, 148–154.PubMedCrossRefGoogle Scholar
  51. 51.
    Unwin, N. (1993) Neurotransmitter action: opening of ligand-gated ion channels. Cell 72, 31–41.PubMedCrossRefGoogle Scholar
  52. 52.
    Fyfe, G. K., Quinn, A., and Canessa, C. M. (1998) Structure and function of the Mec-ENaC family of ion channels. Sem. Nephrol. 18, 138–151.Google Scholar
  53. 53.
    Lorenz, L., Pusch, M., and Jentsch, T. J. (1996) Heteromultimeric CLC chloride channels with novel properties. Proc. Natl. Acad. Sci. USA 93, 13,362–13,366.PubMedCrossRefGoogle Scholar
  54. 54.
    Kawashima, E., Estoppey, D., Virginio, C., Fahmi, D., Rees, S., Surprenant, A., and North, R. A. (1998) A novel and efficient method for the stable expression of heteromeric ion channels in mammalian cells. Recept. Channels 5, 53–60.PubMedGoogle Scholar
  55. 55.
    Stauber, R. H., Horie, K., Carney, P., Hudson, E. A., Tarasova, N. I., Gaitanaris, G. A., and Pavlakis, G. N. (1998) Development and applications of enhanced green fluorescent protein mutants. BioTechniques 24, 462–466, 468-471.PubMedGoogle Scholar
  56. 56.
    Yang, T. T., Sinai, P., Green, G., Kitts, P. A., Chen, Y. T., Lybarger, L., et al. (1998) Improved fluorescence and dual color detection with enhanced blue and green variants of the green fluorescent protein. J. Biol. Chem. 273, 8212–8216.PubMedCrossRefGoogle Scholar
  57. 57.
    Shieh, B. H. and Zhu, M. Y. (1996) Regulation of the TRP Ca2+ channel by INAD in Drosophila photoreceptors. Neuron 16, 991–998.PubMedCrossRefGoogle Scholar
  58. 58.
    Short, D. B., Trotter, K. W., Reczek, D., Kreda, S. M., Bretscher, A., Boucher, R. C., et al. (1998) An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J. Biol. Chem. 273, 19,797–19,801.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Jan Eggermont
    • 1
  • Dominique Trouet
    • 1
  • Gunnar Buyse
    • 1
  • Rudi Vennekens
    • 1
  • Guy Droogmans
    • 1
  • Bernd Nilius
    • 1
  1. 1.Laboratory of PhysiologyCatholic University of LeuvenLeuvenBelgium

Personalised recommendations