Advertisement

High Affinity Scorpion Toxins for Studying Potassium and Sodium Channels

  • Lourival D. Possani
  • Baltazar Becerril
  • Jan Tytgat
  • Muriel Delepierre
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

High Affinity Scorpion Toxins for Studying Potassium and Sodium Channels

Keywords

Disulfide Bridge Nuclear Magnetic Resonance Spectroscopy Scorpion Venom Scorpion Toxin Honeybee Venom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

REFERENCES

  1. 1.
    Tsetlin, V. (1999) Snake a-neurotoxins and other “three finger” proteins. Eur. J. Biochem. 264, 281–286.PubMedCrossRefGoogle Scholar
  2. 2.
    Possani, L. D., Becerril, B., Delepierre, M., and Tytgat, J. (1999) Scorpion toxins specific for Na+-channels. Eur. J. Biochem. 264, 287–300.PubMedCrossRefGoogle Scholar
  3. 3.
    MacIntosh, J. M., Olivera, B. M., and Cruz, L. J. (1999) Conus peptides as probes for ion channels. Methods Enzymol. 294, 605–624.CrossRefGoogle Scholar
  4. 4.
    Kem, W., Pennington, M. W., and Norton, R. S. (1999) Sea anemone toxins as templates for the desighn of immunosuppressant drugs. Perspectives Drug Disc. Design 15/16, 111–129.CrossRefGoogle Scholar
  5. 5.
    Grishin, E. (1999) Polypeptide neurotoxins from spider venoms. Eur. J. Biochem. 264, 276–280.PubMedCrossRefGoogle Scholar
  6. 6.
    Garcia, M. L., Hanner, M., Knaus, H. G., Koch, R., Schmalhofer, W., Slaughter, R. S., and Kaczorowski, G. J. (1997) Pharmacology of potassium channels. Adv. Pharmacol. 39, 425–471.PubMedCrossRefGoogle Scholar
  7. 7.
    Catterall, W. A. (1980) Neurotoxins that act on voltage sensitive sodium channels in excitable membranes. Annu. Rev. Pharmacol. Toxicol. 20, 15–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Gordon, D., Savarin, P., Gurevitz, M., and Zinn-Justin, S. (1998) Functional anatomy of scorpion toxins affecting sodium channels. J. Toxicol. Toxin Rev. 17(2), 131–159.Google Scholar
  9. 9.
    Possani, L. D., Selisko, B., and Gurrola, G. B. (1999) Structure and function of scorpion toxins affecting K+-channel. Perspectives Drug Disc. Design 15/16, 15–40.CrossRefGoogle Scholar
  10. 10.
    Tytgat, J., Chandy, G., Garcia, M. L., Gutman, G. A., Martin-Eauclaire, M. F., van derWalt, J. J., and Possani, L. D. (1999) A unified nomenclature for shortchain peptides isolated from scorpion venoms: alpha-KTx molecular subfamilies. Trends Physiol. Sci. 20, 444–447.CrossRefGoogle Scholar
  11. 11.
    Debin, J. A., Maggio, J. E., and Strichartz, G. R. (1993) Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am. J. Physiol. 264 (Cell Physiol. 33) C361–C369.PubMedGoogle Scholar
  12. 12.
    Valdivia, H. H. and Possani, L. D. (1998) Peptide toxins as probes of ryanodine receptor. Trends Cardiovascular Med. 8, 111–118.CrossRefGoogle Scholar
  13. 13.
    D∫uze, G., Zamudio, F., Gomez-Lagunas, F., and Possani, L. D. (1999) A novel K+ channel blocking toxin from Tityus discrepans scorpion venom. FEBS Lett. 456, 146–148.CrossRefGoogle Scholar
  14. 14.
    Gurrola, G. B., Rosati, B., Roccheti, M., Pimienta, G., Zaza, A., Arcangeli, A., et al. (1999) A toxin to nervous, cardiac, and endocrine ERG K+ channels isolated from Centruroides noxius scorpion venom. FASEB J. 13, 953–962.PubMedGoogle Scholar
  15. 15.
    Chuang, R. S. I., Jaffe, H., Cribbe, L., Perez-Reyes, E., and Swartz, K. J. (1998) Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin. Nature Neurosci. 1, 668–674.PubMedCrossRefGoogle Scholar
  16. 16.
    Vazquez, A., Tapia, J. V., Eliason, W. K., Martin, B. M., Lebreton, F., Delepierre, M., et al. (1995) Cloning and characterization of the cDNAs encoding Na+ channel specific toxins 1 and 2 of the scorpion Centruroides noxius Hoffmann. Toxicon 33, 1161–1170.PubMedCrossRefGoogle Scholar
  17. 17.
    Dauplais, M., Gilquin, B., Possani, L. D., Gurrola-Briones, G., Roumestand, C., and Menez, A. (1995) Determination of the three-dimensional solution structure of noxiustoxin: analysis of structural differences with related shortchain scorpion toxins. Biochemistry 34, 16,563–16,573.PubMedCrossRefGoogle Scholar
  18. 18.
    Lebreton, F., Ramirez, A. N., Balderas, C., Possani L. D., and Delepierre, M. (1994) Primary and NMR three-dimensional structure determination of a novel crustacean toxin from the venom of the scorpion Centruroides limpidus limpidus Karsch. Biochemistry 33(37), 11,135–11,149.PubMedCrossRefGoogle Scholar
  19. 19.
    Schütte, C. G., Lemm, T., Glombitza, G. J., and Sandhoff, K. (1998) Complete localization of disulfide bonds in GM2 activator protein. Protein Sci. 7, 1039–1045.PubMedCrossRefGoogle Scholar
  20. 20.
    Jover, E., Couraud, F., and Rochat, H. (1980) Two types of scorpion neurotoxins characterized by their binding to two separate receptor sites on rat brain synaptosomes. Biochem. Biophys. Res. Comm. 95(4), 1607–1614.PubMedCrossRefGoogle Scholar
  21. 21.
    Zlotkin, E., Gurevitz, M., Fowler, E., and Adams, M. E. (1993) Depressant insect selective neurotoxins from scorpion venom: chemistry, action and gene cloning. Arch. Insect Biochem. Physiol 22, 55–73.PubMedCrossRefGoogle Scholar
  22. 22.
    Kobayashi, Y., Takashima, H., Tamaoki, H., Kiogoku, Y., Lambert, P., Kuroda, H., et al. (1991) The cysteine-stabilized alpha-helix: a common structural motif of ion-channel blocking neurotoxic peptides. Biopolymers 31, 1213–1220.PubMedCrossRefGoogle Scholar
  23. 23.
    Menez, A., Bontems, F., Roumestand, C., Gilquin, B., and Toma, F. (1992) Structural basis for functional diversity of animal toxins. Proc. Royal Soc. Edinburgh 99B, 83–103.Google Scholar
  24. 24.
    Oren, D. A., Froy, O., Amit, E., Kleinberger-Doron, V., Gurevitz, M., and Shaanan, B. (1998) An excitatory scorpion toxin with a distinctive feature: an additional helix at the C-terminus and its implications for interaction with insect sodium channels. Structure 6, 10,995–11,003.CrossRefGoogle Scholar
  25. 25.
    Fontecilla-Camps, J. C., Almassy, R. J., Suddath, F. L., Watt, D. D., and Bugg, C. E. (1980) Three-dimensional structure of a protein from scorpion venom: a new structural class of neurotoxins. Proc. Natl. Acad. Sci. USA 77(11), 6496–6500.PubMedCrossRefGoogle Scholar
  26. 26.
    Polikarpov, I., Matilde Jr M. S., Marangoni, S., Toyama, M. H., and Teplyakov, A. (1999) Crystal structure of neurotoxin Ts1 from tityus serrulatus provides insights into the specificity and toxicity of scorpion toxins. J. Mol. Biol. 290, 175–184.PubMedCrossRefGoogle Scholar
  27. 27.
    Darbon, H., Weber, C., and Braun W. (1991) Two-dimensional 1H nuclear magnetic resonance study of AaH IT, an anti-insect toxin from the scorpion Androctonus australis Hector. Sequential resonance assignments and folding of the polypeptide chain. Biochemistry 30(7), 1836–1845.PubMedCrossRefGoogle Scholar
  28. 28.
    Pintar, A., Possani, L. D., and Delepierre, M. (1999) Solution structure of toxin 2 from Centruroides noxius Hoffmann, a β scorpion neurotoxin acting on sodium channel. J. Mol. Biol. 287, 359–365.PubMedCrossRefGoogle Scholar
  29. 29.
    Fontecilla-Camps, J. C., Almassy, R. J., Suddath, F. L., and Bugg, C. E. (1982) The three-dimensional structure scorpion neurotoxins. Toxicon 20, 1–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Fontecilla-Camps, J. C, Habersetzer-Rochat, C., and Rochat, H. (1988) Orthorhombic crystals and three-dimensional structure of the potent toxin II from the scorpion Androctonus australis Hector. Proc. Natl. Acad. Sci. USA 85, 7443–7447.PubMedCrossRefGoogle Scholar
  31. 31.
    He, X-L, Li, H. M., Zeng, Z. H., Liu, X-Q, Wang, M., and Wang, D. C. (1999) Crystal structure of two α-like scorpion toxins: non proline cis peptide bonds and implications for new binding site selectivity on the sodium channel. J. Mol. Biol. 292, 125–135.PubMedCrossRefGoogle Scholar
  32. 32.
    Delepierre, M., Prochnika-Chalufour, A., and Possani, L. D. (1997) A novel potassium channel blocking toxin from the scorpion Pandinus imperator: a 1H NMR analysis using a nano-NMR probe. Biochemistry 36, 2649–2658.PubMedCrossRefGoogle Scholar
  33. 33.
    Park, C. S. and Miller, C. (1992) Mapping function to structure in a channelblocking peptide: electrostatic mutants of charybdotoxin. Biochemistry 31, 7749–7755.PubMedCrossRefGoogle Scholar
  34. 34.
    Bontems, F., Roumestand, C., Gilquin, B., Menez, A., and Toma, F. (1991) Refined structure of charybdotoxin: common motifs in scorpion toxins and insect defensins. Science 254, 1521–1523.PubMedCrossRefGoogle Scholar
  35. 35.
    Bonmatin, J. M., Bonnat, J. L., Gallet, X., Vovelle, F., Ptak, M., Reichhart, J. M., et al. (1992) Two-dimensional 1H NMR study of recombinant insect defensin A in water: resonance assignments, secondary structure and global folding. J. Biomol. NMR 2, 235–256.PubMedCrossRefGoogle Scholar
  36. 36.
    Krezel, A. M., Kasibhatla, C., Hidalgo, P., MacKinnon, R., and Wagner, G. (1995) Solution structure of the potassium channel inhibitor agitoxin 2: caliper for probing channel geometry. Protein Sci. 4, 1478–1489.PubMedCrossRefGoogle Scholar
  37. 37.
    Delepierre, M., Prochnika-Chalufour, A., Boisbouvier, J., and Possani, L. D. (1999) Pi7, an orphan peptide from the scorpion Pandinus imperator: a 1H NMR analysis using a nano-NMR probe. Biochemistry 38, 16,756–16,765.PubMedCrossRefGoogle Scholar
  38. 38.
    Becerril, B., Marangoni, S., and Possani, L. D. (1997) Toxins and genes isolated from scorpions of the genus Tityus. Toxicon 35, 821–835.CrossRefGoogle Scholar
  39. 39.
    Fernandez, I., Romi, R., Szendeffy, S., Martin-Eauclaire, M. F., Rochat, H., Van Rietschoten, J., et al. (1994) Kaliotoxin (1-37) shows structural differences with related potassium channel blockers. Biochemistry 33, 14,256–14,263.PubMedCrossRefGoogle Scholar
  40. 40.
    Adam, K. R., Schmidt, H., Stampfli, R., and Weiss, C. (1966) The effect of scorpion venom on single myelinated nerve fibers of the frog. Br. J. Pharmacol. 26, 666–677.Google Scholar
  41. 41.
    Koppenhoeffer, E. and Schmidt, H. (1968) Die wirkung von skorpiongift auf die ionenstrome des Ranvierschen schnurrings. II. Unvollstandige natrium inaktivierung. Pfluegers Arch. Ges. Physiol. 303, 150–161.CrossRefGoogle Scholar
  42. 42.
    Meves, H., Rubly, N., and Watt, D. D. (1982) Effect of toxins from the venom of the scorpion Centruroides sculpturatus on the Na currents of the node of Ranvier. Pfluegers Arch. 393, 56–62.CrossRefGoogle Scholar
  43. 43.
    Nonner, W. (1979) Effects of Leiurus scorpion venom on the “gating” current in myelinated nerve. Adv. Cytopharmacol. 3, 345–352.PubMedGoogle Scholar
  44. 44.
    Benoit, E. and Dubois, J. M. (1987) Properties of maintained sodium current induced by a toxin from Androctonus scorpion in frog node of Ranvier. J. Physiol. (Lond.) 383, 93–114.Google Scholar
  45. 45.
    Strichartz, G. R. and Wang, G. K. (1986) Rapid voltage-dependent dissociation of scorpion alpha-toxins coupled to Na channel inactivation in amphibian myelinated nerves. J. Gen. Physiol. 88, 413–435.PubMedCrossRefGoogle Scholar
  46. 46.
    Meves, H., Simard, J. M., and Watt, D. D. (1986) Interactions of scorpion toxins with the sodium channel. Ann. NY Acad. Sci. 479, 113–132.PubMedCrossRefGoogle Scholar
  47. 47.
    Katz, N. L. and Edwards, C. (1972) The effect of scorpion venom on the neuromuscular junction of the frog. Toxicon 10, 133–137.PubMedCrossRefGoogle Scholar
  48. 48.
    Cahalan, M. D. (1975) Modification of sodium channel gating in frog myelinated nerve fibers by Centruroides sculpturatus scorpion venom. J. Physiol. (Lond.) 244, 511–534.Google Scholar
  49. 49.
    Couraud, F., Jover, E., Dubois, J. M., and Rochat, H. (1982) Two types of scorpion receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. Toxicon 20(1), 9–16.PubMedCrossRefGoogle Scholar
  50. 50.
    Hue, S. L., Meves, H., Rubly, N., and Watt, D. D. (1983) A quantitative study of the action of Centruroides sculpturatus toxins III and IV on the Na currents of the node of Ranvier. Pfluegers Arch. 397, 90–99.CrossRefGoogle Scholar
  51. 51.
    Vijverberg, H. P., Pauron, D., and Lazdunski, M. (1984) The effect of Tityus serrulatus scorpion toxin gamma on Na channels in neuroblastoma cells. Pfluegers Arch. 401, 297–303.CrossRefGoogle Scholar
  52. 52.
    Cestele, S., Qu, Y., Rogers, J. C., Rochat, H., Scheuer, T., and Catterall, W. A. (1998) Voltage sensor-trapping: enhanced activation of sodium channels by beta-scorpion toxin bound to the S3-S4 loop domain II. Neuron 21, 919–931.PubMedCrossRefGoogle Scholar
  53. 53.
    Wang, G. W. and Strichartz, G. (1982) Simultaneous modifications of sodium channel gating by two scorpion toxins. Biophys. J. 40, 174–179.CrossRefGoogle Scholar
  54. 54.
    Chandy, K. G. and Gutman, G. A. (1995) Voltage-gated potassium channel genes, in Ligand-and Voltage-Gated Ion Channels (North, R. A., ed.), CRC Press, Boca Raton, FL, pp. 1–71.Google Scholar
  55. 55.
    Kaczorowski, G.J., Knaus, H. G., Leonard, R. J., McManus, O. B., and Garcia, M. L. (1996) High conductance calcium-activated potassium channels; structure, pharmacology and function. J. Biomembr. Bioenerg. 28, 253–265.Google Scholar
  56. 56.
    Goldstein, S. A. N. and Miller, C. (1993) Mechanism of charybdotoxin block of a voltage-gated K channel. Biophys. J. 65, 1613–1619.PubMedCrossRefGoogle Scholar
  57. 57.
    Goldstein, S. A. N., Pheasant, D. J., and Miller, C. (1994) The charybdotoxin receptor of a Shaker K channel: peptide and channel residues mediating molecular recognition. Neuron 12, 1377–1388.PubMedCrossRefGoogle Scholar
  58. 58.
    Becerril, B., Corona, M., Garcia, C., Bolivar, F., and Possani, L. D. (1995) Cloning of genes encoding scorpion toxins: an interpretative review. J. Toxicol. Toxin Rev. 14, 339–357.Google Scholar
  59. 59.
    Froy, O., Sagiv, T., Poreh, M., Urbach, D., Zilberberg, N., and Gurevitz, M. (1999) Dynamic diversification from a putative common ancestor of scorpion toxins affecting, sodium, potassium and chloride channels. J. Mol. Evol. 48, 187–196.PubMedCrossRefGoogle Scholar
  60. 60.
    Martin-Eauclaire, M. F., Ceard, B., Ribeiro, A. M., Diniz, C. R., Rochat, H., and Bougis, P. E. (1994) Biochemical, pharmacological and genomic characterization of TsIV, an alpha-toxin from the venom of the South American scorpion Tityus serrulatus. FEBS Lett. 342, 181–184.CrossRefGoogle Scholar
  61. 61.
    Legros, C., Bougis, P. E. and Martin-Eauclaire, M. F. (1997) Genomic organization of the KTX2 gene, encoding a “short” scorpion toxin active on K+ channels. FEBS Lett. 402, 45–49.PubMedCrossRefGoogle Scholar
  62. 62.
    Wu, J. J., Dai, L., Lan, Z. D., and Chi, C. W. (1999) Genomic organization of three neurotoxins active on small conductance Ca2+-activated potassium channels from the scorpion Buthus martensii Karsch. FEBS Lett. 452, 360–364.PubMedCrossRefGoogle Scholar
  63. 63.
    Selisko, B., Garcia, C., Becerril, B., Gómez-Lagunas, F., Garay, C., and Possani, L. D. (1998) Cobatoxins 1 and 2 from Centruroides noxius Hoffmann constitute a subfamily of potassium-channel-blocking scorpion toxins. Eur. J. Biochem. 254, 468–479.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhu, S., Li, W., Zeng, X., Jiang, D., Mao, X., and Liu, H. (1999) Molecular cloning and sequencing of two “short chain” and two “long chain” K+ channelblocking peptides from the Chinese scorpion Buthus martensii Karsch. FEBS Lett. 457, 509–514.PubMedCrossRefGoogle Scholar
  65. 65.
    Legros, C., Ceard, B., Bougis, P. E., and Martin-Eauclaire, M. F. (1998) Evidence for a new class of scorpion toxins active against K+ channels. FEBS Lett. 431, 375–380.PubMedCrossRefGoogle Scholar
  66. 66.
    Schweitz, H. and Moinier, D, (1999) Mamba toxins. Perspectives Drug Disc. Design 15/16, 83–110.CrossRefGoogle Scholar
  67. 67.
    Craig, A. G., Bandyopadhyay, P., and Olivera, B. (1999) Post-translationally modified neuropeptides from Conus venoms. Eur. J. Biochem. 264, 271–275.PubMedCrossRefGoogle Scholar
  68. 68.
    Olivera, B. M., Rivier, J., Clark, C., Ramilo, C. A., Corpuz, G. P., Abogadie, F. C., et al. (1990) Diversity of Conus neuropeptide. Science 249, 257–263.PubMedCrossRefGoogle Scholar
  69. 69.
    Beress, L., Beress, R., and Wunderer, G. (1975) Isolation and characterization of three polypeptides with neurotoxic activity from Anemonia sulcata. FEBS Lett. 50, 311–314.Google Scholar
  70. 70.
    Swartz, K. J. and MacKinon, R. (1997) Hanatoxin modifies the gating of a voltage-dependent K+-channel through multiple binding sites. Neuron 18, 665–673.PubMedCrossRefGoogle Scholar
  71. 71.
    Newcomb, R., Szoke, B., Palma, A., Wang, G., Chen Xh, Hopkins, W., et al. (1998) Selective peptide antoganist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas. Biochemistry 37, 15,353–15,362.Google Scholar
  72. 72.
    Carabez-Trejo, A. and Possani, L. D. (1982) Electron microscopic evidence for scorpion toxin binding to synapses of rat brain cortex. Neurosci. Lett. 32, 103–108.CrossRefGoogle Scholar
  73. 73.
    Zamudio, F. Z., Gurrola, G. B., Arévalo, C., Sreekumar, R., Walker, J. W., Valdivia, H. H., and Possani, L. D. (1997) Primary structure and synthesis of Imperatoxin A (IpTxa), a peptide activator of Ca2+ release channels/ryanodine receptors. FEBS Lett. 405, 385–389.PubMedCrossRefGoogle Scholar
  74. 74.
    Gurrola, G. B. and Possani, L. D. (1995) Structural and functional features of noxiustoxin: a K+ channel blocker. Biochem. Mol. Biol. Int. 37, 527–535.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Lourival D. Possani
    • 1
  • Baltazar Becerril
    • 1
  • Jan Tytgat
    • 2
  • Muriel Delepierre
    • 3
  1. 1.Instituto de Biotechnologia-UNAMAvenida UniversidadCuernavaca
  2. 2.Laboratory of ToxicologyUniversity of LeuvenLeuven
  3. 3.Laboratoire de Résonance Magnétique NucéairePasteur InstituteParisFrance

Personalised recommendations