Small Conductance Calcium-Activated Potassium Channels in Rat Brain

Autoradiographic Localization Using Two Specific Toxins, Apamin and Scyllatoxin
  • Marc Borsotto
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Calcium-dependent potassium channels (KCa channels) are involved in numerous physiological processes such as neurosecretion, action potential, and regulation of repetitive activity (1,2). As regards to their biophysical and pharmacological properties, KCa channels can be divided into three groups called BKCa, IKCa, and SKCa channels.

Keywords

Albumin CaCl2 Arginine Disulfide Epinephrin 

References

  1. 1.
    Vergara, C., Latorre, R., Marrion, N. V., and Adelman, J. P. (1998) Calciumactivated potassium channels. Curr. Opin. Neurobiol. 8(3), 321–329.PubMedCrossRefGoogle Scholar
  2. 2.
    Sah, P. (1996) Ca(2+)-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci. 19(4), 150–154.PubMedCrossRefGoogle Scholar
  3. 3.
    Marty, A. (1989) The physiological role of calcium-dependent channels. Trends Neurosci. 12(11), 420–424.PubMedCrossRefGoogle Scholar
  4. 4.
    Romey, G. and Lazdunski, M. (1984) The coexistence in rat muscle cells of two distinct classes of Ca2+-dependent K+ channels with different pharmacological properties and different physiological functions. Biochem. Biophys. Res. Commun. 118, 669–674.PubMedCrossRefGoogle Scholar
  5. 5.
    Latorre, R. (1986) Ion channel reconstitution, in The Large Calcium-Activated Potassium Channel (Miller, ed.), Plenum, New York, pp. 431–467.Google Scholar
  6. 6.
    Gimenez-Gallego, G., Navia, M. A., Reuben, J. P., Katz, G. M., Kaczorowski, G. J., and Garcia, M. L. (1988) Purification, sequence, and model structure of charybdotoxin, a potent selective inhibitor of calcium-activated potassium channels. Proc. Natl. Acad. Sci. USA 85(10), 3329–3333.PubMedCrossRefGoogle Scholar
  7. 7.
    McKinnon, R. and Miller, C. (1988) Mechanism of charybdotoxin block of the high-conductance, Ca2+-activated K+ channel. J. Gen. Physiol. 91, 335–349.CrossRefGoogle Scholar
  8. 8.
    Galvez, A., Gimenez-Gallego, G., Reuben, J. P., Roy-Contancin, L., Feigenbaum, P., Kaczorowski, G. J., and Garcia, M. L. (1990) Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus. J. Biol. Chem. 265(19), 11,083–11,090.PubMedGoogle Scholar
  9. 9.
    Viana, F., Bayliss, D. A., and Berger, A. J. (1993) Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons. J. Neurophysiol. 69(6), 2150–2163.PubMedGoogle Scholar
  10. 10.
    Kohler, M., Hirschberg, B., Bond, C. T., Kinzie, J. M., Marrion, N. V., Maylie, J., and Adelman, J. P. (1996) Small-conductance, calcium-activated potassium channels from mammalian brain [see comments]. Science 273(5282), 1709–1714.PubMedCrossRefGoogle Scholar
  11. 11.
    Grinstein, S., Dupre, A., and Rothstein, A. (1982) Volume regulation by human lymphocytes. Role of calcium. J. Gen. Physiol. 79(5), 849–868.PubMedCrossRefGoogle Scholar
  12. 12.
    Ishii, T. M., Silvia, C., Hirschberg, B., Bond, C. T., Adelman, J. P., and Maylie, J. (1997) A human intermediate conductance calcium-activated potassium channel. Proc. Natl. Acad. Sci. USA 94(21), 11,651–11,656.PubMedCrossRefGoogle Scholar
  13. 13.
    Morris, A. P., Gallacher, D. V., and Lee, J. A. (1986) A large conductance, voltage-and calcium-activated K+ channel in the basolateral membrane of rat enterocytes. FEBS Lett. 206(1), 87–92.PubMedCrossRefGoogle Scholar
  14. 14.
    Castle, N. A. and Strong, P. N. (1986) Identification of two toxins from scorpion (Leiurus quinquestriatus) venom which block distinct classes of calciumactivated potassium channel. FEBS Lett. 209(1), 117–121.PubMedCrossRefGoogle Scholar
  15. 15.
    Joiner, W. J., Wang, L. Y., Tang, M. D., and Kaczmarek, L. K. (1997) hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc. Natl. Acad. Sci. USA 94(20), 11,013–11,018.PubMedCrossRefGoogle Scholar
  16. 16.
    Blatz, A. L. and Magleby, K. L. (1986) Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature 323(6090), 718–720.PubMedCrossRefGoogle Scholar
  17. 17.
    Maruyama, Y., Gallacher, D. V., and Petersen, O. H. (1983) Voltage and Ca2+-activated K+ channel in baso-lateral acinar cell membranes of mammalian salivary glands. Nature 302(5911), 827–829.PubMedCrossRefGoogle Scholar
  18. 18.
    Sah, P. and McLachlan, E. M. (1991) Ca(2+)-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: a role for Ca(2+)-activated Ca2+ release. Neuron 7(2), 257–264.PubMedCrossRefGoogle Scholar
  19. 19.
    Lancaster, B. and Adams, P. R. (1986) Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J. Neurophysiol. 55(6), 1268–1282.PubMedGoogle Scholar
  20. 20.
    Schwindt, P. C., Spain, W. J., and Crill, W. E. (1992) Effects of intracellular calcium chelation on voltage-dependent and calcium-dependent currents in cat neocortical neurons. Neuroscience 47(3), 571–578.PubMedCrossRefGoogle Scholar
  21. 21.
    Lorenzon, N. M. and Foehring, R. C. (1992) Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons. J. Neurophysiol. 67(2), 350–363.PubMedGoogle Scholar
  22. 22.
    Vincent, J.-P., Schweitz, H., and Lazdunski, M. (1975) Structure-function relationships and site of action of apamin, a neurotoxic polypeptide of bee venom with an action on the central nervous system. Biochemistry 14, 2081–2091.PubMedCrossRefGoogle Scholar
  23. 23.
    Hugues, M., Duval, D., Kitabgi, P., Lazdunski, M., and Vincent, J.-P. (1982) Preparation of a pure monoiodo-derivative of the bee venom neurotoxin apamin and its binding properties to rat brain synaptosomes. J. Biol. Chem. 257, 2762–2769.PubMedGoogle Scholar
  24. 24.
    Labbe-Jullie, C., Granier, C., Albericio, F., Defendini, M. L., Ceard, B., Rochat, H., and Van Rietschoten, J. (1991) Binding and toxicity of apamin. Characterization of the active site. Eur. J. Biochem. 196(3), 639–645.PubMedCrossRefGoogle Scholar
  25. 25.
    Hugues, M., Duval, D., Schmid, H., Kitabgi, P., Lazdunski, M., and Vincent, J.-P. (1982) Specific binding and pharmacological interactions of apamin, the neurotoxin from bee venom, with guinea pig colon. Life Sci. 31, 437–443.PubMedCrossRefGoogle Scholar
  26. 26.
    Hugues, M., Schmid, H., Romey, G., Duval, D., Frelin, C., and Lazdunski, M. (1982) The Ca2+ dependent slow K+ conductance in cultured rat muscle cells: characterization with apamin. EMBO J. 1, 1039–1042.PubMedGoogle Scholar
  27. 27.
    Seagar, M. J., Deprez, P., Martin-Moutot, N., and Couraud, F. (1987) Detection and photoaffinity labelling of the Ca2+-activated K+ channelassociated apamin receptor in cultured astrocytes from rat brain. Brain Res. 411(2), 226–230.PubMedCrossRefGoogle Scholar
  28. 28.
    Wu, K., Carlin, R., Sachs, L., and Siekevitz, P. (1985) Existence of a Ca2+-dependent K+ channel in synaptic membrane and postsynaptic density fractions isolated from canine cerebral cortex and cerebellum, as determined by apamin binding. Brain Res. 360(1-2), 183–194.PubMedCrossRefGoogle Scholar
  29. 29.
    Schmid-Antomarchi, H., Hugues, M., and Lazdunski, M. (1986) Properties of the apamin-sensitive Ca2+-activated K+ channel in PC12 pheochromocytoma cells which hyper-produce the apamin receptor. J. Biol. Chem. 261, 8633–8637.PubMedGoogle Scholar
  30. 30.
    Auguste, P., Hugues, M., Borsotto, M., Thibault, J., Romey, G., Coppola, T., and Lazdunski, M. (1992) Characterization and partial purification from pheochromocytoma cells of an endogenous equivalent of Scyllatoxin, a scorpion toxin which blocks small conductance Ca2+-activated K+ channels. Brain Res. 599, 230–236.PubMedCrossRefGoogle Scholar
  31. 31.
    Castle, N. and Strong, P. (1986) Identification of two toxins from scorpion (Leiurus quinquestriatus) venom which block distinct classes of calcium-activated potassium channel. FEBS Lett. 209, 117–121.PubMedCrossRefGoogle Scholar
  32. 32.
    Auguste, P., Hugues, M., Grave, B., Gesquiere, J. C., Maes, P., Tartar, A., Romey, G., Schweitz, H., and Lazdunski, M. (1990) Leiurotoxin I (scyllatoxin), a peptide ligand for Ca2(+)-activated K+ channels. Chemical synthesis, radiolabelling, and receptor characterization. J. Biol. Chem. 265(8), 4753–4759.PubMedGoogle Scholar
  33. 33.
    Auguste, P., Hugues, M., Mourre, C., Moinier, D., Tartar, A., and Lazdunski, M. (1992) Scyllatoxin, a blocker of Ca(2+)-activated K+ channels: structurefunction relationships and brain localization of the binding sites. Biochemistry 31(3), 648–654.PubMedCrossRefGoogle Scholar
  34. 34.
    Deschaux, O., Bizot, J. C., and Goyffon, M. (1997) Apamin improves learning in an object recognition task in rats. Neurosci. Lett. 222(3), 159–162.PubMedCrossRefGoogle Scholar
  35. 35.
    Messier, C., Mourre, C., Bontempi, B., Sif, J., Lazdunski, M., and Destrade, C. (1991) Effect of apamin, a toxin that inhibits Ca(2+)-dependent K+ channels, on learning and memory processes. Brain Res. 551(1-2), 322–326.PubMedCrossRefGoogle Scholar
  36. 36.
    Heurteaux, C., Messier, C., Destrade, C., and Lazdunski, M. (1993) Memory processing and apamin induce immediate early gene expression in mouse brain. Brain Res. Mol. Brain. Res. 18(1-2), 17–22.PubMedCrossRefGoogle Scholar
  37. 37.
    Gandolfo, G., Schweitz, H., Lazdunski, M., and Gottesmann, C. (1996) Sleep cycle disturbances induced by Apamin, a selective blocker of Ca2+-activated K+ channels. Brain Res. 736, 344–347.PubMedCrossRefGoogle Scholar
  38. 38.
    Ishii, T. M., Maylie, J., and Adelman, J. P. (1997) Determinants of apamin and d-tubocurarine block in SK potassium channels. J. Biol. Chem. 272(37), 23,195–23,200.PubMedCrossRefGoogle Scholar
  39. 39.
    Schmid-Antomarchi, H., Renaud, J. F., Romey, G., Hugues, M., Schmid, A., and Lazdunski, M. (1985) The all-or-none role of innervation in expression of apamin receptor and of apamin-sensitive Ca2+-activated K+ channel in mammalian skeletal muscle. Proc. Natl. Acad. Sci. USA 82(7), 2188–2191.PubMedCrossRefGoogle Scholar
  40. 40.
    Renaud, J. F., Desnuelle, C., Schmid-Antomarchi, H., Hugues, M., Serratrice, G., and Lazdunski, M. (1986) Expression of apamin receptor in muscles of patients with myotonic muscular dystrophy. Nature 319(6055), 678–680.PubMedCrossRefGoogle Scholar
  41. 41.
    Behrens, M. I., Jalil, P., Serani, A., Vergara, F., and Alvarez, O. (1994) Possible role of apamin-sensitive K+ channels in myotonic dystrophy. Muscle Nerve 17(11), 1264–1270.PubMedCrossRefGoogle Scholar
  42. 42.
    Harley, H. G., Rundle, S. A., Reardon, W., Myring, J., Crow, S., Brook, J. D., et al. (1992) Unstable DNA sequence in myotonic dystrophy. Lancet 339(8802), 1125–1128.PubMedCrossRefGoogle Scholar
  43. 43.
    Abita, J. P., Chicheportiche, R., Schweitz, H., and Lazdunski, M. (1977) Effects of neurotoxins (veratridine, sea anemone toxin, tetrodotoxin) on transmitter accumulation and release by nerve terminals in vitro. Biochemistry 16(9), 1838–1844.PubMedCrossRefGoogle Scholar
  44. 44.
    Hartree, E. F. (1972) Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 48(2), 422–427.PubMedCrossRefGoogle Scholar
  45. 45.
    Mourre, C., Hugues, M., and Lazdunski, M. (1986) Quantitative autoradiographic mapping in rat brain of the receptor of apamin, a polypeptide toxin specific for one class of Ca2+-dependent K+ channels. Brain Res. 382, 239–249.PubMedCrossRefGoogle Scholar
  46. 46.
    Fosset, M., Schmid-Antomarchi, H., Hugues, M., Romey, G., and Lazdunski, M. (1984) The presence in pig brain of an endogenous equivalent of apamin, the bee venom peptide that specifically blocks Ca2+-dependent K+ channels. Proc. Natl. Acad. Sci. USA 81, 7228–7232.PubMedCrossRefGoogle Scholar
  47. 47.
    Lancaster, B., Nicoll, R. A., and Perkel, D. J. (1991) Calcium activates two types of potassium channels in rat hippocampal neurons in culture. J. Neurosci. 11(1), 23–30.PubMedGoogle Scholar
  48. 48.
    Pedarzani, P. and Storm, J. F. (1996) Evidence that Ca/calmodulin-dependent protein kinase mediates the modulation of the Ca2+-dependent K+ current, IAHP, by acetylcholine, but not by glutamate, in hippocampal neurons. Pflugers Arch. 431(5), 723–728.PubMedGoogle Scholar
  49. 49.
    Lancaster, B. and Zucker, R. S. (1994) Photolytic manipulation of Ca2+ and the time course of slow, Ca(2+)-activated K+ current in rat hippocampal neurones. J. Physiol. 475(2), 229–239.PubMedGoogle Scholar
  50. 50.
    Sah, P. and McLachlan, E. M. (1992) Potassium currents contributing to action potential repolarization and the afterhyperpolarization in rat vagal motoneurons. J. Neurophysiol. 68(5), 1834–1841.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Marc Borsotto
    • 1
  1. 1.Institut de Pharmacologie Moéculaire et CellulaireValbonneFrance

Personalised recommendations