Vitamin D3 Analog Screening

  • Sami Väisänen
  • Sanna Ryhänen
  • Pekka H. Mäenpää
Part of the Methods in Molecular Biology™ book series (MIMB, volume 176)


Human vitamin D receptor (hVDR) belongs to the superfamily of steroid receptors. The receptors are nuclear transcription factors that regulate gene expression in response to binding of their specific ligands. According to present knowledge, the molecular mechanism of vitamin D action involves ligand binding, which induces a conformational change into hVDR, which, in turn, enables transactivation. This can result in either activation or repression of gene transcription (1). In the search of potent vitamin D3 analogs, it is reasonable to target the screening methods on the steps mentioned above.


Scatchard Analysis Conformational Study Guanidinium Thiocyanate Standard Sodium Citrate Osteocalcin Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Haussler, M. R., Whitfield, G. K., Haussler, C. A., Hsieh, J.-C., Thompson, P. D., Selznick, S. H., Dominguez, C. E., and Jurutka, P. W. (1998) Nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J. Bone Miner. Res. 13, 325–349.PubMedCrossRefGoogle Scholar
  2. 2.
    Bouillon, R., Okamura, W. H., and Norman, A. W. (1995) Structure-function relationship in the vitamin D endocrine system. Endocr. Rev. 16, 200–257.PubMedGoogle Scholar
  3. 3.
    Binderup, L., Binderup, E. and Godtfredsen, W. O. (1997) Development of new vitamin D analogs, in Vitamin D (Feldman, D., Glorieux, F. H., and Pike, J. W., eds.), Academic, San Diego, pp.1027–1043.Google Scholar
  4. 4.
    Binderup, L., Carlberg, C., Kissmeyer, A. M., Latini, S., Mathiasen, I. S., and Hansen, C M. (1994) The need for new vitamin D analogues: mechanisms of action and clinical applications, in Vitamin D: A Pluripotent Steroid Hormone: Structural Studies, Molecular Endocrinology and Clinical Applications (Norman, A. W., Bouillon, R., and Thomasset, M., eds.), Walter de Gruyter, New York, pp. 55–63.Google Scholar
  5. 5.
    Johnsson, C. and Tufveson, G. (1994) MC 1288-A vitamin D analogue with immunosuppressive effects on heart and small bowel grafts. Transpl. Int. 7, 392–397.PubMedGoogle Scholar
  6. 6.
    Johnsson, C., Binderup, L. and Tufveson, G. (1996) Immunosuppression with the vitamin D analogue MC 1288 in experimental transplantation. Transplant Proc. 28, 888–891.PubMedGoogle Scholar
  7. 7.
    Väisänen, S., Ryhänen, S., Saarela, J. T. A., and Mäenpää, P. H. (1999) Structurefunction studies of new C-20 epimer pairs of vitamin D3 analogs. Eur. J. Biochem. 261, 706–713.PubMedCrossRefGoogle Scholar
  8. 8.
    Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 1565–1569.CrossRefGoogle Scholar
  9. 9.
    Celeste, A. J., Rosen, V., Buecker, J. L., Kriz, R., Wang, E. A., and Wozney, J. M. (1986) Isolation of the human gene for bone gla protein utilizing mouse and rat cDNA clones. EMBO J. 5, 1885–1890.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Sami Väisänen
    • 1
  • Sanna Ryhänen
    • 1
  • Pekka H. Mäenpää
    • 1
  1. 1.Department of BiochemistryUniversity of KuopioKuopioFinland

Personalised recommendations