Chemical Modification of Lipase for Use in Ester Synthesis

  • Mahiran Basri
  • Kamaruzaman Ampon
  • Che Nyonya A. Razak
  • Abu Bakar Salleh
Part of the Methods in Biotechnology book series (MIBT, volume 15)


Chemical modification studies of proteins originated when interest in quantitative determination of proteins and their various constituent amino acids was started. Later, chemical modification procedures were used to identify the particular amino acid residues required for the biological activity of proteins (1). The increasing interest in the subject during the last decade has been promoted by practical interests related, for example, to possible pharmacological or medical diagnostic application such as to convert a number of protein toxins into toxoids. These toxoids retain some of the original antigenic determinants but are no longer toxic. Other enzymes are modified chemically to alter and improve their native properties and endow them with useful new functions such as to make them more soluble and active and more stable in organic solvents and to change the selectivity of the enzyme (2). Modifications strategies now being developed should soon yield a wide spectrum of novel biomolecules whose activities are optimized for specific industrial processes or therapeutic applications.


Synthetic Activity Sodium Cyanoborohydride Constituent Amino Acid Reductive Alkylation Sodium Hydroxide Pellet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Means, G. E. and Feeney, R. E. (1971) Chemical Modification of Proteins, Holden-Day, San Francisco.Google Scholar
  2. 2.
    Basri, M., Ampon, K., Wan Yunus, W. M. Z., Razak, C. N. A., and Salleh, A. B. (1992) Amidination of lipase with hydrophobic imidoesters. J. Am. Oil Chem. Soc. 69(5), 579–583.CrossRefGoogle Scholar
  3. 3.
    Dubois, G. C., Robinson, E. A., Inman, J. K., Pernam, R. N., and Appella, E. (1981) Rapid removal of acetimidoyl groups from proteins and peptides. Biochem. J. 199, 335–340.Google Scholar
  4. 4.
    Hunter, M. J. and Ludwig, M. L. (1962) The reaction of imidoesters with proteins and related small molecules. J. Am. Chem. Soc. 84, 3491–3504.CrossRefGoogle Scholar
  5. 5.
    Veronese, F. M., Largajolli, R., Boccu, E., Benassi, C. A., and Schiavon, O. (1985) Surface modification of proteins: activation of monomethoxypolyethylene glycol by phenylchloroformates and modification of ribonuclease and superoxide dimutase. Appl. Biochem. Biotechnol. 11, 141–152.CrossRefGoogle Scholar
  6. 6.
    Wofsy, L. and Singer, S. J. (1963) Effects of the amidination reaction on antibody-activity and on the physical properties of some proteins. Biochemistry 2(1), 104–115.CrossRefGoogle Scholar
  7. 7.
    Inman, J. K., Dubois, G. C., and Appella, E. (1983) Amidination. Meth. Enzymol. 91, 559–569.CrossRefGoogle Scholar
  8. 8.
    Fretheim, K., Iwai, S., and Feeney, R. E. (1979) Extensive modification of protein amino groups by reductive addition of different sized substituents. Int. J. Peptide Protein Res. 14, 451–456.CrossRefGoogle Scholar
  9. 9.
    Ampon, K., Salleh, A. B., Salam, F., Yunus, W. M., Razak, C. N. A., and Basri, M. (1991) Reductive alkylation of lipase. Enzyme Microbiol. Technol. 13, 597–601.CrossRefGoogle Scholar
  10. 10.
    Basri, M., Ampon, K., Yunus, W. M., Razak, C. N. A., and Salleh, A. B. (1997) Enzymatic synthesis of fatty esters by alkylated lipase from Candida rugosa. J. Mol. Cat. B: Enzymatic 3, 171–176.CrossRefGoogle Scholar
  11. 11.
    Basri, M., Ampon, K., Yunus, W. M., Razak, C. N. A., and Salleh, A. B. (1995) Synthesis of fatty esters by polyethylene glycol-modified lipase. J. Chem. Technol. Biotechnol. 59, 37–44.CrossRefGoogle Scholar
  12. 12.
    Inada, T., Takahashi, K., Toshimoto, T., Kodera, Y., Matsushima, A., and Saito, Y. (1988) Application of PEG-enzyme and magnetite-PEG-enzyme conjugates for biotechnological processes. Trends Biotechnol. 6, 131–134.CrossRefGoogle Scholar
  13. 13.
    Basri, M., Salleh, A. B., Ampon, K., Yunus, W. M., and Razak, C. N. A. (1991) Modification of lipase by polyethylene glycol. Biocatalysis 4, 313–317.CrossRefGoogle Scholar
  14. 14.
    Baillargeon, M. W. and Sonnet, P. E. (1988) Polyethylene glycol modification of Candida rugosa lipase. J. Am. Oil Chem. Soc. 65(11), 1812–1815.CrossRefGoogle Scholar
  15. 15.
    Basri, M., Salleh, A. B., Ampon, K., Yunus, W. M., and Razak, C. N. A. (1990) Studies on the purification of lipase by Fast Performance Liquid Chromatography (FPLC). Proceedings Malaysian Biochemistry Society Conference 15, 159–161.Google Scholar
  16. 16.
    Hazra, A. K., Chock, S. P., and Albers, R. W. (1984) Protein determination with trinitrobenzene sulfonate: a method relatively independent of amino acid composition. Anal. Biochem. 137, 437–443.CrossRefGoogle Scholar
  17. 17.
    Lowry, O. H., Rosenberg, N. J., Favo, N. L., and Randall, R. J. (1951) Protein measurement with folin phenol reagent. J. Biol. Chem. 193, 265–275.Google Scholar
  18. 18.
    Bradford, M. M. (1976) A rapid and sensitive method utilising the principly of protein-dye binding. Anal. Biochem. 72, 248.CrossRefGoogle Scholar
  19. 19.
    Fields, R. (1972) The measurement of amino acid groups in proteins and peptides. Biochem. J. 124, 581–590.Google Scholar
  20. 20.
    Makoff, A. J. and Malcolm, A. D. B. (1980) Properties of methyl acetimidate and its use as a protein modifying reagent. Biochem. J. 193, 245–249.Google Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Mahiran Basri
    • 1
  • Kamaruzaman Ampon
    • 2
  • Che Nyonya A. Razak
    • 3
  • Abu Bakar Salleh
    • 3
  1. 1.Center for Research in Enzyme and Microbial Technology, Fakulti Sains dan Pengajian Alam SekitarUniversity Putra MalaysiaSerdangMalaysia
  2. 2.Universiti Malaysia SabahKota Kinobaler SabehMalaysia
  3. 3.Center for Research in Enzyme and Microbial Technology, Fakulti Sains dan Alam SekitarUniversity Putra MalaysiaSerdangMalaysia

Personalised recommendations