Lipase-Catalyzed Synthesis of Sugar Fatty Acid Esters in Supercritical Carbon Dioxide

  • Haralambos Stamatis
  • Vasiliki Sereti
  • Fragiskos N. Kolisis
Part of the Methods in Biotechnology book series (MIBT, volume 15)


Fatty acid monoesters and diesters of sugars are widely used as emulsifiers in a great variety of food and cosmetics formulations (1). Traditionally, these surfactants are produced by transesterification at high temperatures in the presence of an alkaline catalyst. Among drawbacks of the conventional chemical process, significant coloration of the final product and the formation of undesirable side products are especially worth mentioning. Consequently, the enzyme-catalyzed regioselective acylation of sugars in nonpolar organic solvents and supercritical fluids (SCFs) at ambient temperatures has received much attention in recent years (2-5).


Supercritical Fluid Fatty Acid Ester Supercritical Carbon Dioxide Phenylboronic Acid Alkaline Catalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Akoh, C. C. (1994) Synthesis of carbohydrate fatty acid polyesters, in Carbohydrate Polyesters as Fat Substitutes (Akoh, C. C. and Swanson, B. G., eds.), Marcel Deckker, New York, pp. 9–35.Google Scholar
  2. 2.
    Therisod, M. and Klibanov, A. M. (1986) Facile enzymatic preparation of monoacylated sugars inpyridine. J. Am. Chem. Soc. 108, 5638–5640.CrossRefGoogle Scholar
  3. 3.
    Riva, S., Chopineau, J., Kieboom, A. P. G., and Klibanov, A. M. (1988) Proteasecatalyzed refioselective esterification of sugars and related compounds in anhydrous dimethylformamide. J. Am. Chem. Soc. 110, 584,585.Google Scholar
  4. 4.
    Klibanov, A. M. (1990) Assymetric transformations catalyzed by enzymes in organic solvents. Acc. Chem. Res. 23, 114–120.CrossRefGoogle Scholar
  5. 5.
    Vulfson, E. N. (1998) Enzymatic synthesis of surfactants, in Novel Surfactants: Preparation, Application and Biodegrability (Holmberg, K., Norberg, M., eds.), Marcel Dekker, New York, pp. 279–300.Google Scholar
  6. 6.
    Randolph, T. W., Blanch, H. W., Prausnitz, J. M., and Wilke, C. R. (1985) Enzymatic catalysis in a supercritical fluid. Biotechnol. Lett. 7, 325–328.CrossRefGoogle Scholar
  7. 7.
    Randolph, T. W., Clark, D. S., Blanch, H. W., and Prausnitz, J. M. (1988) Enzymatic oxidation of cholesterol aggregates in supercritical carbon dioxide. Science 239, 387–390.CrossRefGoogle Scholar
  8. 8.
    Ballesteros, A., Bornscheuer, U., Capewell, A., Combes, D., Condoret, J.-S., Koening, K., et al. (1995) Enzymes in non-conventional phases. Biocatal. Biotransform. 13, 1–42.CrossRefGoogle Scholar
  9. 9.
    Nakamura, K. (1990) Biochemical reactions in supercritical fluids. Trends Biotechnol. 8, 288–292.CrossRefGoogle Scholar
  10. 10.
    Marty, A., Combes, D., and Condoret, J. S. (1994) Continuous reaction-separation process for enzymatic esterification in supercritical carbon dioxide. Biotechnol. Bioeng. 43, 497–504.CrossRefGoogle Scholar
  11. 11.
    Castillo, E., Marty, A., Combes, D., and Condoret, J. S. (1994) Polar substrates for enzymatic reactions in supercritical CO2: how to overcome the solubility limitation. Biotechnol. Lett. 16, 169–174.CrossRefGoogle Scholar
  12. 12.
    Fregapane, G., Sarney, D. B., Sydney, G. G., Knight, D. J., and Vulfson, E. N. (1994) Enzymatic synthesis of mono sac charide fatty acid esters and their comparison with conventional products. J. Am. Oil Chem. Soc. 71, 87–91.CrossRefGoogle Scholar
  13. 13.
    Berger, M., Laumen, K., and Schneider, M. P. (1992) Enzymatic esterification of glycerol I. Lipase-catalyzed synthesis of regioisomerically pure 1, 3-sn-diacylglycerols. J. Am. Oil Chem. Soc. 69, 955–960.CrossRefGoogle Scholar
  14. 14.
    Berger, M. and Schneider, M. P. (1992) Enzymatic esterification of glycerol I. Lipase-catalyzed synthesis of regioisomerically pure 1(3)-rac-monoacylglycerols. J. Am. Oil Chem. Soc. 69, 961–965.CrossRefGoogle Scholar
  15. 15.
    Castillo, E., Dossat, V., Marty, A., Condoret, J. S., and Combes, D. (1997) The role of silica gel in lipase-catalyzed esterification reactions of high-polar substrates. J. Am. Oil Chem. Soc. 74, 77–85.CrossRefGoogle Scholar
  16. 16.
    Charlemagne, D. and Legoy, M. D. (1995) Enzymatic synthesis of polyglycerolfatty acid esters in a solvent free-system. J. Am. Oil Chem. Soc. 72, 61–65.CrossRefGoogle Scholar
  17. 17.
    Stamatis, H., Sereti, V., and Kolisis, F. N. (1998) Studies on the enzymatic synthesis of sugar esters in organic medium and supercritical carbon dioxide. Chem. Biochem. Eng. Quart. 12, 151–156.Google Scholar
  18. 18.
    Tsitsimpikou, C., Stamatis, H., Sereti, V., Daflos, H., and Kolisis, F. N. (1998) Acylation of glucose catalysed by lipases in supercritical carbon dioxide. J. Chem. Technol. Biotechnol. 71, 309–314.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Haralambos Stamatis
    • 1
  • Vasiliki Sereti
    • 1
  • Fragiskos N. Kolisis
    • 1
  1. 1.Department of Chemical EngineeringNational Technical UniversityAthensGreece

Personalised recommendations