Skip to main content

Enzymatic Synthesis and Hydrolysis Reactions of Acylglycerols in Solvent-Free Systems

  • Protocol
Enzymes in Nonaqueous Solvents

Part of the book series: Methods in Biotechnology ((MIBT,volume 15))

Abstract

Lipases (E.C. 3.1.1.3) are conventionally defined as enzymes that catalyze the hydrolysis of acylglycerols to release a fatty acid and lower acylglycerols or glycerol itself. However, this definition is rather restrictive, because these enzymes also cleave a wide variety of other esters as well as amides. In addition, lipases catalyze the corresponding reverse reactions that are normally carried out in media containing only small amounts of water. Indeed, water formed as a by-product of these synthetic reactions should be removed from the reaction mixture in order to shift the position of thermodynamic equilibrium so as to favor the synthetic reactions. A wide variety of industrially important lipase-mediated transformations have been carried out to date (1) in numerous organic solvents (2). Cernia et al. (3) have recently reviewed the role of solvent polarity and hydrophobicity in modulating lipase activity. The present work describes lipase-catalyzed biotransformations in mixtures of liquid substrates because this approach circumvents the need for organic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zaks, A. and Klibanov, A. M. (1985) Enzyme-catalyzed processes in organic solvents. Proc. Natl. Acad. Sci. USA 82, 3192–3196.

    Article  CAS  Google Scholar 

  2. Gandhi, N. N. (1997) Applications of lipase. J. Am. Oil Chem. Soc. 74, 621–634.

    Article  CAS  Google Scholar 

  3. Cernia, E., Palocci, C., and Soro, S. (1998) The role of the reaction medium in lipase-catalyzed esterifications and transesterifications. Chem. Phys. Lipids 93, 157–168.

    Article  CAS  Google Scholar 

  4. Rice, K. E., Watkins, J., and Hill, C. G., Jr. (1999) Hydrolysis of menhaden oil by a Candida cylindracea lipase immobilized in a hollow fiber reactor. Biotechnol. Bioeng. 63, 33–45.

    Article  CAS  Google Scholar 

  5. Malcata, F. X., Hill, C. G., Jr., and Amundson, C. H. (1992) Hydrolysis of butteroil by immobilized lipase using a hollow-fiber reactor: Part II. Uniresponse kinetic studies. Biotechnol. Bioeng. 39, 984–1001.

    Article  CAS  Google Scholar 

  6. Malcata, F. X., Hill, C. G., Jr., and Amundson, C. H. (1992) Hydrolysis of butteroil by immobilized lipase using a hollow-fiber reactor: Part III. Multiresponse kinetic studies. Biotechnol. Bioeng. 39, 1002–1012.

    Article  CAS  Google Scholar 

  7. Malcata, F. X, Hill, C. G., Jr., and Amundson, C. H. (1993) Hydrolysis of butteroil by immobilized lipase using a hollow fiber reactor, Part V: Effects of pH. Biocatalysis 7, 177–219.

    Article  CAS  Google Scholar 

  8. Garcia, H. S., Qureshi, A., Lessard, L., Ghannouchi, S., and Hill, C. G., Jr. (1995) Immobilization of pregastric esterases in a hollow fiber reactor for continuous production of lipolyzed butteroil. Lebensm. Wiss. Technol. 28, 253–258.

    CAS  Google Scholar 

  9. Arcos, J. A., Otero, C., and Hill, C. G., Jr. (1998) Rapid enzymatic production of acylglycerols from conjugated linoleic acid and glycerol in a solvent-free system. Biotechnol. Lett. 20, 617–621.

    Article  CAS  Google Scholar 

  10. Garcia, H. S., Storkson, J. M., Pariza, M. W., and Hill, C. G., Jr. (1998) Enrichment of butteroil with conjugated linoleic acid via enzymatic interesterification (acidolysis) reactions. Biotechnol. Lett. 20, 393–395.

    Article  CAS  Google Scholar 

  11. Hoerr, C. W. and Waugh, D. F. (1955) Some physical characteristics of rearranged lard. J. Am. Oil Chem. Soc. 32, 37–41.

    Article  CAS  Google Scholar 

  12. Marangoni, G. and Rosseau, R. (1995) Engineering triacylglycerols: the role of the interesterification. Trends Food Sci. Technol. 6, 329–335.

    Article  CAS  Google Scholar 

  13. Macrae, A. R. (1983) Lipase-catalyzed interesterification of fats and oils. J. Am. Oil Chem. Soc. 60, 243A–246A.

    Article  Google Scholar 

  14. Huang, K. H., Akoh, C. C., and Erickson, M. C. (1994) Enzymatic modification of melon seed oil: incorporation of eicosapentaenoic acid. J. Agri. Food Chem. 42, 2646–2648.

    Article  CAS  Google Scholar 

  15. Yamane, T., Suzuki, T., Sahashi, Y., Vikersveen, L., and Hoshino, T. (1992) Production of n-3 polyunsaturated fatty acid-enriched fish oil by lipase-catalyzed acidolysis without solvent. J. Am. Oil Chem. Soc. 69, 1104–1107.

    Article  CAS  Google Scholar 

  16. Arcos, J. A. and Otero C. (1996) Enzyme, medium and reaction engineering to design a low-cost, selective production method for mono-and dioleoylglycerols. J. Am. Oil Chem. Soc. 73, 673–683.

    Article  CAS  Google Scholar 

  17. Otero, C., Pastor, E., Fernández, V. M., and Ballesteros, A. (1990) Influence of the support on the reaction course of tributyrin hydrolysis catalyzed by soluble and immobilized lipases. Appl. Biochem. Biotechnol. 23, 237–247.

    Article  CAS  Google Scholar 

  18. Otero, C., Pastor, E., Fernandez, V., and Ballesteros, A. (1990) Synthesis of monobutyrylglycerol by transesterification with soluble and immobilized lipases. Appl. Biochem. Biotechnol. 26, 35–44.

    Article  CAS  Google Scholar 

  19. Chin, S. F., Liu, W., Storkson, J. M., Ha, Y. L., and Pariza, M. W. (1992) Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens. J. Food Compos. Anal. 5, 185–197.

    Article  CAS  Google Scholar 

  20. King, E. L. and Altman, C., (1956) Schematic method of deriving the rate laws for enzyme-catalyzed reactions. J. Phys. Chem. 60, 1375–1378.

    Article  CAS  Google Scholar 

  21. Segel, I. H. (1975) Enzyme Kinetics. Wiley, New York.

    Google Scholar 

  22. Cha, S. (1968) A simple method for derivation of rate equations for enzyme-catalyzed reactions under the rapid equilibrium assumption or combined assumptions of equilibrium and steady state. J. Biol. Chem. 243, 820–825.

    CAS  Google Scholar 

  23. Cleland, W. W. (1975) Partition analysis and the concept of net rate constant as tools in enzyme kinetics. Biochemistry 14, 3220–3224.

    Article  CAS  Google Scholar 

  24. Garcia, H. S., Malcata, F. X., Hill, C. G., Jr., and Amundson, C. H. (1992) Use of Candida rugosa lipase immobilized in a spiral wound membrane reactor for the hydrolysis of milkfat. Enzyme Microb. Technol. 14, 535–545.

    Article  CAS  Google Scholar 

  25. Hill, C. G., Jr. (1977) An Introduction to Chemical Engineering Kinetics and Reactor Design. Wiley, New York, p. 255.

    Google Scholar 

  26. Garcia, H. S., Reyes, H. R., Malcata, F. X., Hill, C. G., Jr., and Amundson, C. H. (1990) Determination of the major free fatty acids in milkfat using a three-component mobile phase for HPLC analysis. Milchwissenschaft 45, 747–759.

    Google Scholar 

  27. Selmi, B., Gontier, E., Ergan, F., and Thomas, D. (1997) Enzymatic synthesis of tricaprylin in a solvent-free system: lipase regiospecificity as controlled by glycerol adsoption on silica gel. Biotechnol. Tech. 11, 543–547.

    Article  CAS  Google Scholar 

  28. Malcata, F. X., Reyes, H. R., Garcia, H. S., Hill, C. G., Jr., and Amundson, C. H. (1990) Immobilized lipase reactors for modification of fats and oils-A review. J. Am. Oil Chem. Soc. 67, 890–910.

    Article  CAS  Google Scholar 

  29. Garcia, H. S., Yang, B. K., and Parkin, K. L. (1996) Continuous reactor for enzymicglycerolysis of butteroil in the absence of solvent. Food Res. Int. 28, 605–609.

    Article  Google Scholar 

  30. McNeill, G. P., Shimizu S., and Yamane T. (1990) Solid phase enzymatic glycerolysis of beef tallow resulting in a high yield of monogliceride. J. Am. Oil Chem. Soc. 67, 779–783.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Otero, C., Arcos, J.A., Garcia, H.S., Hill, C.G. (2001). Enzymatic Synthesis and Hydrolysis Reactions of Acylglycerols in Solvent-Free Systems. In: Vulfson, E.N., Halling, P.J., Holland, H.L. (eds) Enzymes in Nonaqueous Solvents. Methods in Biotechnology, vol 15. Humana Press. https://doi.org/10.1385/1-59259-112-4:479

Download citation

  • DOI: https://doi.org/10.1385/1-59259-112-4:479

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-929-2

  • Online ISBN: 978-1-59259-112-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics