Skip to main content

Biocatalysis in Pharmaceutical Process Development SCH56592, A Case Study

  • Protocol
Enzymes in Nonaqueous Solvents

Part of the book series: Methods in Biotechnology ((MIBT,volume 15))

  • 897 Accesses

Abstract

The literature is now replete with articles covering the use of biocatalysis, with two commercially available databases (1,2), each listing over 20,000 reports of reactions using biologically derived catalysts, and several texts which extensively cover the subject (37). Even the more specific subtopic, the utility of biocatalysis in the pharmaceutical industry, is the subject of recent reviews listing hundreds of references (8,9). With this presence in the literature, it is timely to describe how biocatalysis has been applied by a Process Development Group to the synthesis of a single pharmaceutical entity. Using the antifungal compound SCH56592 (Fig. 1, compound 1) as an example, this chapter will describe several biocatalytic approaches that were explored for the synthesis of key intermediates of this molecule. In keeping with the subject of this volume, the description will concentrate on the use of commercially available enzymes in organic solvents, although hydrolytic reactions and microbial reductions will also be briefly addressed for comparison and to complete the narrative.

Antifungal compound SCH56592 and 1,3-dioxolane azole antifungals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biotransformations CD-ROM. Chapman and Hall, London.

    Google Scholar 

  2. BioCatalysis, Synopsis Scientific Systems, Ltd., Leeds, UK.

    Google Scholar 

  3. Faber, K. (1997) Biotransformations in Organic Chemistry, 3rd edition, Springer-Verlag, Berlin.

    Google Scholar 

  4. Drauz, K. and Waldmann, H., eds. (1995) Enzyme Catalysis in Organic Synthesis: A Comprehensive Handbook, VCH Publishers, New York.

    Google Scholar 

  5. Wong, C.-H. and Whitesides, G. (1994) Enzymes in Synthetic Organic Chemistry,Pergamon, New York.

    Google Scholar 

  6. Poppe L. and Novak, L. (1992) Selective Biocatalysis, VCH Publishers, New York.

    Google Scholar 

  7. Roberts, S. M., Wiggins, K., Casy, G., and Phythian, S., eds. (1992) Preparative Biotransformations: Whole Cell and Isolated Enzymes in Organic Synthesis; Wiley, Chichester, UK.

    Google Scholar 

  8. Zaks, A. and Dodds, D. R. (1997) Application of biocatalysis and biotransformation to the synthesis of pharmaceuticals. Drug Discovery Today 2, 513–531.

    Article  CAS  Google Scholar 

  9. Patel, R. N. (1997) Stereoselective biotransformations in synthesis of some pharmaceutical intermediates. Adv. Appl. Microbiol. 43, 91–140.

    Article  CAS  Google Scholar 

  10. Georgopapaddakou, N. H., Dix, B. A., Smith, S. A., Freudenberger, J., and Funke, P. T. (1987) Effect of antifungal agents on lipid biosynthesis and membrane integrity in Candida albicans. Antimicrob. Agents and Chemother. 31, 46–51.

    Google Scholar 

  11. Saksena, A. K., Girijavallabhan, V. M., Lovey, R. G., Desai, J. A., Pike, R. E., Jao, E., et al. (1995) Sch 51048, a novel broad-spectrum orally active antifungal agent: synthesis and preliminary structure-activity profile. Bioorg. Med. Chem. Lett. 7, 127–132.

    Article  Google Scholar 

  12. Saksena, A. K., Girijavallabhan, V. M., Lovey, R. G., Pike, R. E., Desai, J. A., Ganguly, A. K., et al. (1994) Enantioselective synthesis of the optical isomers of broad-spectrum orally active antifungal azoles, SCH 42538 and SCH 45012. Biorg. Med. Chem. Lett. 4, 2023–2028.

    Article  CAS  Google Scholar 

  13. Allworth, W. L. (1972) Stereochemistry and Its Application in Biochemistry Wiley, New York.

    Google Scholar 

  14. Ramos Tombo, G. M., Schar, H.-P., Busquets, X. F., and Ghisalba, O. (1986) Synthesis of both enantiomeric forms of 2-substituted 1,3 propanediol monoacetates starting from a common prochiral precursor, using enzymic transformations in aqueous and in organic media. Tetrahedron Lett. 27, 5707–5710.

    Article  Google Scholar 

  15. Boland, W., Fröbl, C., and Lorenz, M. (1991) Esterolytic and lipolytic enzymes in organic synthesis. Synthesis 1049-1072.

    Google Scholar 

  16. Danieli, B., Lesma, G., Passerella, D., and Riva, S. (1993) Chiral synthons via enzyme-mediated asymmetrization of meso-compounds. Adv. Use Synthons Org. Chem. 1, 143–219.

    CAS  Google Scholar 

  17. Schoffers, E., Golebiowski, A., and Johnson, C. R. (1996) Enantioselective synthesis through enzymic asymmetrization. Tetrahedron 52, 3769–3826.

    Article  CAS  Google Scholar 

  18. Lovey, R. G., Saksena, A. K., and Girijavallabhan, V. M. (1994) PPL-catalyzed enzymic asymmetrization of a 2-substituted prochiral 1,3-diol with remote chiral functionality: improvements toward synthesis of the eutomers of SCH 45012. Tetrahedron Lett. 35, 6047–6050.

    Article  CAS  Google Scholar 

  19. Morgan, B., Dodds, D. R., Zaks, A., Andrews, D. R., and Klesse, R. (1997) Enzymic desymmetrization of prochiral 2-substituted-1,3-propanediols: a practical chemoenzymatic synthesis of a key precursor of SCH 51048, a broad-spectrum orally active antifungal agent. J. Org. Chem. 62, 7736–7743.

    Article  CAS  Google Scholar 

  20. Sudhakar, A. R. (1995) Process and catalysts for preparing dialkyl malonate intermediates for the synthesis of antifungal agents. US Patent 5, 442,093.

    Google Scholar 

  21. Saksena, A. K., Girijavallabhan, V. M., Lovey, R. E., Pike, R. E., Wang, H., Ganguly, A. K., et al. (1995) Highly stereoselective access to novel 2, 2,4-trisub-stituted tetrahydrofurans by halocyclization: practical chemoenzymic synthesis of SCH 51048, a broad-spectrum orally active antifungal agent. Tetrahedron Lett. 36, 1787–1790.

    Article  CAS  Google Scholar 

  22. Saksena, A. K., Girijavallabhan, V. M., Pike, R. E., Wang, H., Lovey, R. G., Liu, Y.-T., et al. (1995) Preparation of chiral 2-azolylmethyl-2-phenyl 4-sulfonyloxymethyltetrahydrofurans as antifungal intermediates. US Patent 5, 403,937.

    Google Scholar 

  23. Wang, Y.-F., Chen, C.-S., Girdaukas, G., and Sih, C. J. (1984) Bifunctional chiral synthons via biochemical methods. III. Optical purity enhancement in enzymic asymmetric catalysis. J. Am. Chem. Soc. 106, 3695,3696.

    Article  CAS  Google Scholar 

  24. Nielsen, C. M. and Sudhakar, A. (1998) Process for preparing intermediates for the synthesis of antifungal agents. US Patent 5, 76,830.

    Google Scholar 

  25. Ke, T., Wescott, C. R., and Klibanov, A. M. (1996) Prediction for the solvent dependence of enzymatic prochiral selectivity by means of structure-based thermodynamic calculations. J. Am. Chem. Soc. 118, 3366–3374.

    Article  CAS  Google Scholar 

  26. Ebert, C., Ferluga, G., Gardossi, L., Gianferra, T., and Linda, P. (1992) Improved lipase-mediated resolution of mandelic acid esters by multivariate investigation of experimental factors. Tetrahedron: Asymmetry 3, 903–912.

    Article  CAS  Google Scholar 

  27. Shieh, C.-J., Akoh, C. C., and Yee, L. N. (1996) Optimized enzymic synthesis of geranyl butytate with lipase AY from Candida rugosa. Biotechnol. Bioeng. 51, 371–374

    Article  CAS  Google Scholar 

  28. Kuznetsov, V. V., Makhova, N. N., Strelenko, Y. A., Khel’nitskii, L. I. (1991) Role of pH in the synthesis of diaziridines. Izv. Akad. Nauk. SSSR, Ser. Khim. 12, 2861–2871.

    Google Scholar 

  29. Occhiato, E. G., Guarna, A., DeSarlo, F., and Scarpi, D. (1995) Baker’s yeast reduction of a γ-nitro ketones. II. Straightforward enantioselective synthesis of 2,7-dimethyl-1, 6-dioxaspiro [4.4] nonanes. Tetrahedron: Asymmetry 6, 2971–2976.

    Article  CAS  Google Scholar 

  30. Molinari, F., Occhiato, E. G., Aragozzini, F., and Guarna, A. (1998) Microbial biotransformations in water/organic solvent system. Enantioselective reduction of aromatic β-and γ-nitro ketones. Tetrahedron: Asymmetry 9, 1389–1394.

    Article  CAS  Google Scholar 

  31. Seebach, D., Beck, A. K., Mukhopadhyay, T., and Thomas, E. (1982) Diastereoselective synthesis of nitroaldol derivatives. Helv. Chim. Acta 65, 1101–1133.

    Article  CAS  Google Scholar 

  32. Ohtani, I., Kusumi, T., Kashman, Y., and Kakisawa, H. (1991) High-field FT NMR application of Mosher’s method. The absolute configurations of marine terpenoids. J. Am. Chem. Soc. 113, 4092–4096.

    Article  CAS  Google Scholar 

  33. Chen, C.-S., Fujimoto, Y., Girdaukas, G., and Sih, C. J. (1982) Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 104, 7294–7299.

    Article  CAS  Google Scholar 

  34. Wang, Y.-F., Yakovlevsky, K., Zhang, B., and Margolin, A. L. (1997) Crosslinked crystals of subtilisin: versatile catalyst for organic synthesis. J. Org. Chem. 62, 3488–3495.

    Article  CAS  Google Scholar 

  35. Anderson, E. M., Larsson, K. M., and Kirk, O. (1998) One biocatalyst—many applications: the use of Candida antarctica B-lipase in organic synthesis. Biocatal. Biotransform. 16, 181–204.

    Article  CAS  Google Scholar 

  36. Kitayama, T. (1996) Asymmetric synthesis of pheromones for Bactrocera nigrotibialis, Andrena wikella, and Andrena haemorrhoa F from a chiral nitro alcohol. Tetrahedron 52, 6139–6148.

    Article  CAS  Google Scholar 

  37. Barton, D. H. R., Kervagoret, J., and Zard, S. Z. (1996) A useful synthesis of pyrroles from nitroolefins. Tetrahedron 46, 7587–7598.

    Article  Google Scholar 

  38. Denmark, S. E. and Senanayake, C. B. W. (1996) Tandem inter [4+2]/intra [3+2] cycloadditions. 8. Cycloadditions with unactivated dipolarophiles. Tetrahedron 52, 11,579–11,600.

    Article  CAS  Google Scholar 

  39. Sasai, H., Tokunaga, T., Watanabe, S., Suzuki, T., Itoh, N., and Shibasaki, M. (1995) Efficient diastereoslective and enantioselective nitroaldol reactions from prochiral starting materials: utilization of La-Li-6,6’-disubstituted BINOL complexes as asymmetric catalysts. J. Org. Chem. 60, 7388,7389.

    Article  CAS  Google Scholar 

  40. Roddick, F. A. and Britz, M. L. (1997) Production of hexanoic acid by free and immobilized cells of Megasphaera elsdenii: influence of in-situ product removal using ion exchange resin. J. Chem. Technol. Biotechnol. 69, 383–391.

    Article  CAS  Google Scholar 

  41. Yamamoto, K., Nishioka, T., and Oda, J. (1988) Asymmetric ring opening of cyclic acid anhydrides with lipase in organic solvents. Tetrahedron Lett. 29, 1717–1720.

    Article  CAS  Google Scholar 

  42. Terao, Y., Tsuji, K., Murata, M., Achiwa, K., Nishio, T., Watanabe, N., et al. (1989) Facile process for enzymic resolution of racemic alcohols. Chem. Pharm. Bull. 37, 1653–1655.

    CAS  Google Scholar 

  43. Fiaud, J.-C., Gil, R., Legros, J.-Y., Aribi-Zouioueche, L., and Konig, W. A. (1992) Kinetic resolution of 3-tert-butyl and 3-phenylcyclobutylidenethanols through lipase-catalyzed acylation with succinic anhydride. Tetrahedron Lett. 33, 6967–6970.

    Article  CAS  Google Scholar 

  44. Gutman, A., Brenner, D., and Boltanski, A. (1993) Convenient practical resolution of racemic alkyl-aryl alcohols via enzymic acylation with succinic anhydride in organic solvents. Tetrahedron: Asymmetry 4, 839–844.

    Article  CAS  Google Scholar 

  45. Ozegowski R., Kunath, A., and Schick, H. (1993) Lipase-catalyzed asymmetric alcoholysis of 3-substituted pentanedioic anhydrides. Liebigs Ann. Chem. 805–808.

    Google Scholar 

  46. Hyatt, J. A. and Skelton, C. (1997) A kinetic resolution route to the (S)-chromanmethanol intermediate for synthesis of the natural tocols. Tetrahedron: Asymmetry 8, 523–526.

    Article  CAS  Google Scholar 

  47. Morgan, B., Stockwell, B. R., Dodds, D. R., Andrews, D. R., Sudhakar, A. R., Nielsen, C. M., et al. (1997) Chemoenzymic approaches to SCH 56592, a new azole antifungal. J. Am. Oil. Chem. Soc. 74, 1361–1370.

    Article  CAS  Google Scholar 

  48. Degueil-Castaing, M., DeJeso, B., Drouillard, S., and Maillard, B. (1987) Enzymic reactions in organic synthesis: ester interchange of vinyl esters. Tetrahedron Lett. 28, 953,954.

    Article  CAS  Google Scholar 

  49. Izumi, I., Tamura, F., and Sasaki, K. (1992) Enzymic kinetic resolution of [4](1,2) ferrocenophane derivatives. Bull. Chem. Soc. Jpn. 65, 2784–2788.

    Article  CAS  Google Scholar 

  50. Herradon, B. and Valverde, S. (1994) Biocatalytic synthesis of chiral polyoxygenated compounds: modulation of the selectivity upon changes in the experimental conditions. Tetrahedron: Asymmetry 5, 1479–1500.

    Article  CAS  Google Scholar 

  51. Weber, H. K., Stecher, H., and Faber, K. (1995) Sensitivity of microbial lipases to acetaldehyde formed by acyl-transfer reactions from vinyl esters. Biotechnol. Lett. 17, 803–808.

    Article  CAS  Google Scholar 

  52. Guo, Z.-W. and Sih, C. J. (1989) Enantioselective inhibition: strategy for improving the enantioselectivity of biocatalytic systems. J. Am. Chem. Soc. 111, 6836–6841.

    Article  CAS  Google Scholar 

  53. Sanchez-Montero, J. M., Hamon, V., Thomas, D., and Legoy, M. D. (1991) Modulation of lipase hydrolysis and synthesis reactions using carbohydrates. Biochim. Biophys. Acta 1078, 345–350.

    Article  CAS  Google Scholar 

  54. Lundh, M., Smitt, O., and Hedenstrom, E. (1996) Sex pheromone of pine sawflies: enantioselective lipase catalyzed transesterification of erythro-3,7-dimethyl-pentadecan-2-ol, Diprionol. Tetrahedron: Asymmetry 7, 3277–3284.

    Article  CAS  Google Scholar 

  55. Perischetti, R. A., Lalonde, J. J., Govardhan, C. P., Khalaf, N. K., and Margolin, A. L. (1996) Candida rugosa lipase; enantioselectivity enhancements in organic solvents. Tetrahedron Lett. 37, 6507–6510.

    Article  Google Scholar 

  56. Tsai, S.-W. and Dordick, J. S. (1996) Extraordinary enantiospecificity of lipase catalysis in organic media induced by purification and catalyst engineering. Biotechnol. Bioeng. 52, 296–300.

    Article  CAS  Google Scholar 

  57. Kazlauskas, R. J., Weissfloch, A. N. E., Rappaport, A. V., and Cuccia, L. A. (1991) A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. J. Org. Chem. 56, 2656–2665.

    Article  CAS  Google Scholar 

  58. Franssen, M. C. R., Jongejan, H., Kooijman, H., Spek, A. L., Mondril, N. L. F. L., Boavida dos Santos, P. M. A. C., and de Groot, A. (1996) Resolution of a tetrahydrofuran ester by Candida rugosa lipase (CRL) and an examination of CRL’s stereochemical preference in organic media. Tetrahedron: Asymmetry 7, 497–510.

    Article  CAS  Google Scholar 

  59. Cygler, M., Grochulski, P., Kazlauskas, R. J., Schrag, J. P., Bouthillier, F., Rubin, F. B., et al. (1994) A structural basis for the chiral preferences of lipase. J. Am. Chem. Soc. 116, 3180–3186.

    Article  CAS  Google Scholar 

  60. Wu, S.-H., Guo, Z.-W., and Sih, C. J. (1990) Enhancing the enantioselectivity of Candida lipase-catalyzed ester hydrolysis via noncovalent enzyme modification. J. Am. Chem. Soc. 112, 1990–1995

    Article  CAS  Google Scholar 

  61. Allenmark, S. and Ohlsson, A. (1992) Studies of the heterogeneity of a Candida cylindracea (rugosa) lipase: monitoring of esterolytic activity and enantioselectivity by chiral liquid chromatography. Biocatalysis 6, 211–221.

    Article  CAS  Google Scholar 

  62. Rua, M. L., Diaz-Maurino, T., Fernandez, V. M., Otero, C., and Ballesteros, A. (1993) Purification and characterization of two distinct lipases from Candida cylindracea. Biochim. Biophys. Acta 1156, 181–189.

    CAS  Google Scholar 

  63. del Rio, J. L. and Faus, I. (1998) Resolution of (±)-trans-2-phenylcyclohexan-1-ol by lipases from Candida rugosa: effect of catalyst source and reaction conditions. Biotechnol. Lett. 20, 1021–1025.

    Article  CAS  Google Scholar 

  64. Guo, Z.-W. and Sih, C. J. (1989) Enantioselective inhibition: strategy for improving the enantioselectivity of biocatalytic systems. J. Am. Chem. Soc. 111, 6836–6841.

    Article  CAS  Google Scholar 

  65. Lalonde, J. J., Govardhan, C., Khalaf, N., Martinez, K. V., and Margolin, A. L. (1995) Cross-linked crystals of Candida rugosa lipase: highly efficient catalysts for the resolution of chiral esters. J. Am. Chem. Soc. 117, 6845–6852.

    Article  CAS  Google Scholar 

  66. Colton, I. J., Ahmed, S. N., and Kazlauskas, R. J. (1995) A 2-propanol treatment increases the enantioselectivity of Candida rugosa lipase toward esters of chiral carboxylic acids. J. Org. Chem. 60, 212–217.

    Article  CAS  Google Scholar 

  67. FDA (1992) Food and Drug Administration Policy Statement for the Development of New Stereoisomeric Drugs. Chirality 4, 338–340.

    Article  Google Scholar 

  68. Stinson, S. C. (1995) Chiral drugs. Chem. Eng. News Oct. 9, p. 52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Morgan, B., Dodds, D.R., Homann, M.J., Zaks, A., Vail, R. (2001). Biocatalysis in Pharmaceutical Process Development SCH56592, A Case Study. In: Vulfson, E.N., Halling, P.J., Holland, H.L. (eds) Enzymes in Nonaqueous Solvents. Methods in Biotechnology, vol 15. Humana Press. https://doi.org/10.1385/1-59259-112-4:423

Download citation

  • DOI: https://doi.org/10.1385/1-59259-112-4:423

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-929-2

  • Online ISBN: 978-1-59259-112-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics