Advertisement

Enzymes in Nonaqueous Solvents

Applications in Carbohydrate and Peptide Preparation
  • Shui-Tein Chen
  • Boonyaras Sookkheo
  • Suree Phutrahul
  • Kung-Tsung Wang
Part of the Methods in Biotechnology book series (MIBT, volume 15)

Abstract

In nature, the vast majority of enzyme-catalyzed reactions are carried out in water. Traditionally, enzymic catalysis in organic synthesis is carried out in aqueous

Keywords

Organic Solvent Microwave Irradiation Vinyl Acetate Phosphomolybdic Acid Peptide Bond Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Homandberg, G. A., Mattis, J. A., and Laskowski, M., Jr. (1978) Synthesis of peptide bonds by proteinases. Addition of organic cosolvents shifts peptide bond equilibria toward synthesis. Biochemistry 17, 5220–5227.CrossRefGoogle Scholar
  2. 2.
    Barbas, C. F., III Matos, J. R., West, J. B., and Wong, C. H. (1988) A search for peptide ligase: cosolvent-mediated conversion of proteases to esterases for irreversible synthesis of peptides. J. Am. Chem. Soc. 110, 5162–5166.CrossRefGoogle Scholar
  3. 3.
    Jackson, D. Y., Burnier, J., Quan, C., Stanley, M., Tom, J., and Wells, J. A. (1994) A designed peptide ligase for total synthesis of ribonuclease a with unnatural catalytic residues. Science 266, 243–247.CrossRefGoogle Scholar
  4. 4.
    Abrahmsen, L., Tom, J., Burnier, J., Butcher, K. A., Kossiakoff, A., and Wells, J. A. (1991) Engineering subtilisin and its substrates for efficient ligation of peptide bonds in aqueous solution. Biochemistry 30, 4151–4159.CrossRefGoogle Scholar
  5. 5.
    Gomez-Puyou, M. T. D. and Gomez-Puyou, A. (1998) Enzymes in low water systems. Crit. Rev. Biochem. Mol. Biol. 33, 53–89.Google Scholar
  6. 6.
    Klibanov, A. M. (1997) Why are enzymes less active in organic solvents than in water? IBTECH 15, 97–101.Google Scholar
  7. 7.
    Klibanov, A. M. (1989) Enzymatic catalysis in anhydrous organic solvents. Trends Biochem. Sci. 14, 141–144.CrossRefGoogle Scholar
  8. 8.
    Gupta, M. N. (1992) Enzyme function in organic solvents. Eur. J. Biochem. 203, 25–32.CrossRefGoogle Scholar
  9. 9.
    Wong, C. H. and Wang, K. T. (1991) New developments in enzymatic peptide synthesis. Experientia 47, 1123–1129.CrossRefGoogle Scholar
  10. 10.
    Wong, C. H. (1989) Enzymatic catalysis inorganic synthesis. Science 244, 1145–1152.CrossRefGoogle Scholar
  11. 11.
    Chen, C. S. and Sih, C. J. (1989) General aspects and optimization of enantioselective biocatalysis in organic solvents: the use of lipases. Angew. Chem. Int. Ed. Engl. 28, 695–707.CrossRefGoogle Scholar
  12. 12.
    Dordick, J. S. (1992) Designing enzymes for use in organic solvents. Biotechnol. Prog. 8, 259–267.CrossRefGoogle Scholar
  13. 13.
    Klibanov, A. M. (1986) Enzymes that work inorganic solvents. Chemtech 16, 354–359.Google Scholar
  14. 14.
    Dastoli, F. R., Musto, N. A., and Price, S. (1966) Reactivity of active sites of chymotrypsin suspended in an organic medium. Arch. Biochem. Biophys. 115, 44–47.CrossRefGoogle Scholar
  15. 15.
    Dastoli, F. R. and Price, S. (1967) Further studies on xanthine oxidase in nonpolar media. Arch. Biochem. Biophys. 122, 289–291.CrossRefGoogle Scholar
  16. 16.
    Zaks, A. and Klibanov, A. M. (1985) Enzyme catalyzed processes in organic solvents. Proc. Nat. Acad. Sci. USA 82, 3192–3196.CrossRefGoogle Scholar
  17. 17.
    Koskinen, A. M. P. and Klibanov, A. M. (1996) Enzymatic Reactions in Organic Media. Blackie Academic & Professional, New York.Google Scholar
  18. 18.
    Dickinson, M. and Fletcher, P. D. I. (1989) Views and comment: enzymes in organic solvents. Enzyme Microb. Technol. 11, 55,56.Google Scholar
  19. 19.
    Bell, G., Halling, P. J., Moore, B. D., and Partridge J. (1995) Biocatalyst behaviour in low-water system. Trends Biotechnol. 13, 468–473.CrossRefGoogle Scholar
  20. 20.
    Gill, L. and Vulfson, E. (1994) Enzymic catalysis in heterogeneous eutectic mixtures of substrates. TIBTECH 12, 118–122.Google Scholar
  21. 21.
    Walsh, C. (1977) Enzymatic Reaction Mechanisms, W. H. Freeman and Co., San Francisco, pp. 9–48.Google Scholar
  22. 22.
    Faber, K. and Riva, S. (1992) Enzyme-catalyzed irreversible acyl transfer. Synthesis 895–910.Google Scholar
  23. 23.
    Jakubke, H. D., Kuhl, P., and Konnecke, A. (1985) Basic principles of protease-catalyzed peptide bond formation. Angew. Chem. Int. Ed. Engl. 24, 85–93.CrossRefGoogle Scholar
  24. 24.
    Wedcott, C. R. and Klibanov, A. M. (1994) The solvent dependence of enzyme specificity. Biochim. Biophys. Acta 1206, 1–9.CrossRefGoogle Scholar
  25. 25.
    Halling P. J. (1989) Lipase-catalysed reactions in low-water organic-media—effects of water activity and chemical modification. Biochem. Soc. Trans. 17, 1142–1145.Google Scholar
  26. 26.
    Ingalls, R. G., Squires, R. G., and Butler, L. G. (1975) Reversal of enzymatic hydrolysis: rate and extent of ester synthesis as catalysed by chymotrypsin and subtilisin carlsberg at low water concentrations. Biotechnol. Bioeng. 17, 1627–1637.CrossRefGoogle Scholar
  27. 27.
    Brink, L. E. S., Tramper, J., Luyben, K. Ch. A. M., and Riet, K. V. (1988) Biocatalysis in organic media. Enzyme Microb. Technol. 10, 736–743.Google Scholar
  28. 28.
    Kasche, V., Michaelis, G., and Galunsky, B. (1991) Binding of organic solvent molecules influences the p1’-p2’ stereo-and sequence-specificity of α-chymo-trypsin in kinetically controlled peptide synthesis. Biotech. Lett. 13, 75–80.CrossRefGoogle Scholar
  29. 29.
    Halling, P. J. (1990) Solvent selection for biocatalyst in mainly organic system—prediction of effects on equilibrium position. Biotechnol. Bioeng. 35, 691–701.CrossRefGoogle Scholar
  30. 30.
    Nagashima, T., Watanabe, A., and Kise, H. (1992) Peptide synthesis by proteases in organic solvents: medium effect on substrate specificity. Enzyme Microb. Technol. 14, 842–847.CrossRefGoogle Scholar
  31. 31.
    Partridge, J., Halling, P. J., and Moore, B. D. (1998) Practical route to high activity enzyme preparations for synthesis in organic media. Chem. Commun 841–842.Google Scholar
  32. 32.
    Wu, S. H., Lo, L. C., Chen, S. T., and Wang, K. T. (1989) Manipulation of enzymatic regioselectivity by structural modification of substrates. J. Org. Chem. 54, 4220–4222.CrossRefGoogle Scholar
  33. 33.
    Chen, S. T. and Wang, K. T. (1988) Papain catalysed esterification of N-protected amino acids. Chem. Commun. 327–328.Google Scholar
  34. 34.
    Chen, S. T., Hsiao, S. C., and Wang. K. T. (1991) Stable industrial protease catalyzed peptide bond formation in organic solvent. Bioorg. Med. Chem. Lett. 1, 445–450.CrossRefGoogle Scholar
  35. 35.
    Chen, S. T., Chen, S. Y., and Wang, K. Y. (1992) Kinetically controlled peptide bond formation in anhydrous alcohol catalyzed by an industrial protease “Alcalase”. J. Org. Chem. 57, 6960–6965.CrossRefGoogle Scholar
  36. 36.
    Chen, S. T., Chen, S. Y., Tu, C. C., and Wang. K. T. (1993) Investigation of the conformation, solubility, structure and selectivity of alkaline proteases in anhydrous alcohols. Bioorg. Med. Chem. Lett. 3, 1643–1648CrossRefGoogle Scholar
  37. 37.
    Chen, S. T., Chen, S. Y., Tu, C. C., and Wang. K. T. (1995) Physicochemical properties of alkaline serine proteases in alcohol. J. Protein Chem. 14, 205–216.CrossRefGoogle Scholar
  38. 38.
    Wang, Y. F., Lalonde, J. J., Momongan, M., Bergbreiter, D. E., and Wong, C. H. (1988) Lipase-catalyzed irreversible trans-esterifications using enol esters as acylating reagents: preparative enantio-and regioselective synthesis of alcohols, glycerol derivatives, sugars, and organometallics. J. Am. Chem. Soc. 110, 7200–7205.CrossRefGoogle Scholar
  39. 39.
    Wang, Y. F., Chen, S. T., Liu, K. C., and Wong, C. H. (1989) Lipased-catalysed irreversible trans-esterification using enol esters: resolution of cyanohydrins andsynthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate and (S)-propranolol. Tetrahedron Lett. 30, 1917–1920.CrossRefGoogle Scholar
  40. 40.
    Ueji, S., Fujino, R., Okubo, N., Miyazawa, T., Kurita, S., Kitadani, M., et al. (1992) Solvent-induced inversion of enantio-selectivity in lipase-catalysed esterification of 2-phenoxypropionic acids. Biotechnol. Lett. 14, 163–168.CrossRefGoogle Scholar
  41. 41.
    Janssen, A. E., Vaidya, A. M., and Halling, P. J. (1996) Substrate specificity and kinetics of Candida rugosa lipase in organic media. Ann. NY Acad. Sci. 799, 257–261.CrossRefGoogle Scholar
  42. 42.
    Janssen, A. E., Vaidya, A. M., and Halling, P. J. (1996) Substrate specificity and kinetics of Candida rugosa lipase in organic media. Enzyme Microb. Technol. 18, 340–346.Google Scholar
  43. 43.
    Parida, S. and Dordick, J. S. (1993) Tailoring lipase specificity by solvent and substrate chemistries. J. Org. Chem. 58, 3238–3244.CrossRefGoogle Scholar
  44. 44.
    Sweers, H. M. and Wong, C. H. (1986) Enzyme-catalyzed regioselective deacylation of protected sugar in carbohydrate synthesis. J. Am. Chem. Soc. 108, 6421,6422.CrossRefGoogle Scholar
  45. 45.
    Riva, S., Chopineau, J., Kieboom, A. P. G., and Klibanov. A. M. (1988) Protease-catalyzed regioselective esterification of sugars and related compounds in anhydrous dimethylformamide. J. Am. Chem. Soc. 110, 584–589.CrossRefGoogle Scholar
  46. 46.
    Nicotra, F., Riva, S., Secundo, F., and Zucchelli, L. (1989) An interesting example of complementary regioselective acylation of secondary hydroxyl groups by different lipases. Tetrahedron Lett. 30, 1703,1704.CrossRefGoogle Scholar
  47. 47.
    Uemura, A., Nozaki, K., Yamashita, J. I., and Yasumoto, M. (1989) Lipase-catalyzed regioselective acylation of sugar moieties of nucleosides. Tetrahedron Lett. 30, 3817,3818.Google Scholar
  48. 48.
    Faber, K. and Riva, S. (1992) Enzyme-catalyzed irreversible acyl transfer. Synthesis 895–910.Google Scholar
  49. 49.
    Houng, J. Y. and Chen, S. T. (1996) Kinetic resolution of amino acid esters catalyzed by lipases. Chirality 8, 418–422.CrossRefGoogle Scholar
  50. 50.
    Chen, S. T., Huang, W. H., and Wang, K. T. (1994) Resolution of amino acids in a mixture of 2-methyl-2-propanol (95%)/water (5%) catalyzed by alcalase via in situ racemizationofone antipode mediated by pyridoxal 5-phosphate. J. Org. Chem. 59, 7580,7581.Google Scholar
  51. 51.
    Chen, S. T., Huang, W. H., and Wang, K. T. (1994) Kinetic resolution of esters of amino acid in t-butanol containing 5% water catalyzed by a stable industrial alkaline protease. Chirality 6, 572–576.CrossRefGoogle Scholar
  52. 52.
    Technology vision 2020. The U. S. Chemical Industry. Copyright@Dec. 1996 by The Amer. Chem. Soc., Amer. Inst. of Chem. Engin., The Chem. Manuf. Assoc. The Council of Chem. Res., The Synthetic Org. Chem. Manuf. Assoc.Google Scholar
  53. 53.
    Dagani, R. (1997) Molecular magic with microwaves: scientists are discovering new ways to use microwaves in organic synthesis, materials processing, waste remediation. Chem. Eng. News 26–33 (February 10).Google Scholar
  54. 54.
    Bose, A. K., Banik, B. K., Lavlinskaia, N., Jayaraman, M., and Manhas, M. S. (1997) More chemistry in a microwave: nontraditional techniques using domestic microwave ovens have been developed for conducing a wide variety of organic reactions that are fast, safe, inexpensive, and friendly to the enviroment. CHEMTECH 18–23 (September).Google Scholar
  55. 55.
    Caddick, S. (1995) Microwave assisted organic reactions. Tetrahedron 51, 10,403–10,432.CrossRefGoogle Scholar
  56. 56.
    Chen, S. T., Chiou, S. H., and Wang, K. T. (1990) Preparative scale organic synthesis using a kitchen microwave oven. Chem. Commun. 807.Google Scholar
  57. 57.
    Kabza, K. G., Gestwicki, J. E., McGrath, J. L., and Petrassi, H. M. (1996) Effect of microwave radiation on copper(ii) 2,2’-bipyridyl-mediated hydrolysis of bis(p-nitrophenyl) phospho-diester and enzymatic hydrolysis of carbohydrates. J. Org. Chem. 61, 9599–9602.CrossRefGoogle Scholar
  58. 58.
    Carrillo-Munoz, J. R., Bouvet, D., Guibe-Jampel, E., Loupy, A., and Petit, A. (1996) Microwave-promoted lipase-catalyzed reactions. resolution of (+)-1-phenylethanol. J. Org. Chem. 61, 7746–7749.CrossRefGoogle Scholar
  59. 59.
    Parker, M. C., Besson, T., Lamare, S., and Legoy, M. D. (1996) Microwave radiation can increase the rate of enzyme-catalysed reaction in organic media. Tetrahedron Lett. 37, 8383–8386.CrossRefGoogle Scholar
  60. 60.
    Gelo-Pujic, M., Guibe-Jampel, E., Loupy, A., Galema, S. A., and Mathe, D. (1996) Lipase-catalyzed esterification of some α-D-glucopyranosides in dry media under focused microwave irradiation. I. Chem. Soc. Perkin Trans. 1, 2777–2780.CrossRefGoogle Scholar
  61. 61.
    Lin, G. and Lin, W. Y. (1998) Microwave-promoted lipase-catalyzed reactions. Tetrahedron Lett. 39, 4333–4336.CrossRefGoogle Scholar
  62. 62.
    Chen, S. T., Tseng, P. H., Yu, H. M., W. C. Y., Hsiao, K. F., Wu, S. H., Wang, K. T. (1997) The studies of the microwave effects on the chemical reactions. J. Chin. Chem. Soc. 44, 169.Google Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Shui-Tein Chen
    • 1
  • Boonyaras Sookkheo
    • 1
  • Suree Phutrahul
    • 2
  • Kung-Tsung Wang
    • 1
  1. 1.Academia SinicaInstitute of Biological ChemistryTaipeiTaiwan
  2. 2.Department of Chemistry,Faculty of ScienceChiang Mai UniversityChiang MaiThailand

Personalised recommendations