Skip to main content

Enzymatic Conversion of Organosilicon Compounds in Organic Solvents

  • Protocol
Enzymes in Nonaqueous Solvents

Part of the book series: Methods in Biotechnology ((MIBT,volume 15))

  • 878 Accesses

Abstract

Recently, the bioconversion of non-natural organic compounds has become increasingly important in order to deepen the knowledge of biocatalysts and to expand their application. In this sense, organosilicon compounds are very interesting targets as non-natural compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colvin, E. W. (1981) Silicon in Organic Synthesis, Butterworths, London, UK.

    Google Scholar 

  2. Tacke, R. and Zilch, H. (1986) Sila-substitution-a useful strategy for drug design? Endeavour New Series 10, 191–196.

    Article  CAS  Google Scholar 

  3. Rioci, A., Seconi, G., and Taddei, M. (1989) Bioorganosilicon chemistry: trends and perspectives. Chimica Oggi 7, 15–21.

    Google Scholar 

  4. Fessenden, R. J. and Fessenden, J. S. (1980) Trends in organosilicon biological research. Adv. Organometal Chem. 18, 275–299.

    Article  CAS  Google Scholar 

  5. Garson, L. R. and Kirchner, L. K. (1971) Organosilicon entities as prophylactic and therapeutic agents. J. Pharm. Sci. 60, 1113–1127.

    Article  CAS  Google Scholar 

  6. Creamer, C. E. (1982) Organosilicon chemistry and its application in the manufacture of pharmaceuticals. Pharm. Technol. March, 79–86.

    Google Scholar 

  7. Tacke, R. and Becker, B. (1987) Sila-substitution of drugs and biotransformation of organosilicon compounds. Main Group Metal Chem. 10, 169–197.

    CAS  Google Scholar 

  8. Kawamoto, T., Sonomoto, K., and Tanaka, A. (1991) Efficient optical resolution of 2-(4-chlorophenoxy)propanoic acid with lipase by the use of organosilicon compounds as substrate: the role of silicon atom in enzymatic recognition. J. Biotechnol. 18, 85–92.

    Article  CAS  Google Scholar 

  9. Pan, S.-H., Kawamoto, T., Fukui, T., Sonomoto, K., and Tanaka, A. (1990) Stereoselective esterification of halogen-containing carboxylic acids by lipase in organic solvent: effects of alcohol chain length. Appl. Microbiol. Biotechnol. 34, 47–51.

    Article  CAS  Google Scholar 

  10. Kawamoto, T., So, R. S., Masuda, Y., and Tanaka, A. (1999) Efficient enzymatic synthesis of amide with (aminomethyl)trimethylsilane. J. Biosci. Bioeng. 87, 607–610.

    Article  CAS  Google Scholar 

  11. Uejima, A., Fukui, T., Fukusaki, E., Omata, T., Kawamoto, T., Sonomoto, K., and Tanaka, A. (1993) Efficient kinetic resolution of organosilicon compounds by stereoselective esterification with hydrolases in organic solvent. Appl. Microbiol. Biotechnol. 38, 482–486.

    Article  CAS  Google Scholar 

  12. Larson, G. L. and Torres, E. (1985) Asymmetric induction by chiral silicon groups. J. Organometal Chem. 239, 19–27.

    Article  Google Scholar 

  13. Fukui, T., Kawamoto, T., and Tanaka, A. (1994) Enzymatic preparation of optically active silylmethanol derivatives having stereogenic silicon atom by hydrolase-catalyzed enantioselective esterification. Tetrahedron: Asymmetry 5, 73–82.

    Article  CAS  Google Scholar 

  14. Ishikawa, H., Yamanaka, H., Kawamoto, T., and Tanaka, A. (1999) Enzymatic synthesis of silicon-containing dipeptides with 3-trimethylsilylalanine. Appl. Microbiol. Biotechnol. 51, 470–473.

    Google Scholar 

  15. Feder, J., Brougham, L. R., and Wildi, B. S. (1974) Inhibition of thermolysin by dipeptides. Biochemistry 13, 1186–1189.

    Article  CAS  Google Scholar 

  16. McConnel, R. M., York, J. L., Frizzell, D., and Ezell, C. (1993) Inhibition studies of some serine and thiol proteinases by new leupeptin analogues. J. Med. Chem. 36, 1084–1089.

    Article  Google Scholar 

  17. Ishikawa, H., Yamanaka, H., Kawamoto, T., and Tanaka, A. (1999) Inhibition of thermolysin by 3-trimethylsilylalanine derivatives. Appl. Microbiol. Biotechnol. 53, 19–22.

    Article  CAS  Google Scholar 

  18. Tsai, S.-W. and Wei, H.-J. (1994) Enantioselective esterification of racemic naproxen by lipases in organic solvent. Enzyme Microb. Technol. 16, 328–333.

    Article  CAS  Google Scholar 

  19. Tsai, S.-W. and Wei, H.-J. (1994) Effect of solvent on enantioselective esterification of naproxen by lipase with trimethylsilyl methanol. Biotechnol. Bioeng. 43, 64–68.

    Article  CAS  Google Scholar 

  20. Tsai, S.-W. and Wei, H.-J. (1994) Kinetics of enantioselective esterification of naproxen by lipase in organic solvents. Biocatalysis 11, 33–45.

    Article  CAS  Google Scholar 

  21. Grisenti, P., Ferraboschi, P., Manzocchi, A., and Santaniello, E. (1992) Enantioselective transesterification of 2-methyl-1,3-propenediol derivatives catalyzed by Pseudomonas fluorescens lipase in an organic solvent. Tetrahedron 48, 3827–3834.

    Article  CAS  Google Scholar 

  22. Allevi, P., Ciuffreda, P., and Anastasia, M. (1997) Lipase catalysed resolution of (R)-and (S)-1-trimethylsilyl-l-alkyn-3-ols: useful intermediates for the synthesis of optically active γ-lactones. Tetrahedron: Asymmetry 8, 93–99.

    Article  CAS  Google Scholar 

  23. Fritsche, K., Syldatk, C., Wagner, F., and Hengelsberg, H. (1989) Enzymatic resolution of rac-1,1-dimethyl-l-sila-cyclohexan-2-ol by ester hydrolysis or transesterification using a crude lipase preparation of Candida cylindracea. Appl. Microbiol. Biotechnol. 31, 107–111.

    CAS  Google Scholar 

  24. Djerourou, A.-H. and Blanco, L. (1991) Synthesis of optically active 2-sila-1,3-propanediol derivatives by enzymatic transesterification. Tetrahedron Lett. 32, 6325,6326.

    Article  CAS  Google Scholar 

  25. Yamanaka, H., Fukui, T., Kawamoto, T., and Tanaka, A. (1996) Enzymatic preparation of optically active 3-trimethysilylalanine. Appl. Microbiol. Biotechnol. 45, 51–55.

    Article  CAS  Google Scholar 

  26. Farthing, A. C. (1950) Synthetic polypeptides. Part 1. Synthesis of oxazolid-2: 5-diones and a new reaction of glycine. J. Chem. Soc. 1950, 3213–3217.

    Article  Google Scholar 

  27. Brenner, M. and Huber, W. (1953) Herstellung von α-Aminosaureestern durch Alkoholyse der Methylester. Helv. Chim. Acta 36, 1109–1115.

    Article  CAS  Google Scholar 

  28. Porter, T. H. and Shive, W. (1968) DL-2-Indaneglycine and DL-β-trimethyl-silylalanine. J. Med. Chem. 11, 402,403.

    Google Scholar 

  29. Takeuchi, Y., Itoh, N., Note, H., Koizumi, T., and Yamaguchi, K. (1991) α-Cyano-α-fluorophenylacetic acid (CFPA): a new reagent for determining enantiomeric excess that gives very large 19F NMR ?δ values. J. Am. Chem. Soc. 113, 6318.

    Article  CAS  Google Scholar 

  30. Takeuchi, Y., Itoh, N., Satoh, T., Koizumi, T., and Yamaguchi, K. (1993) Chemistry of novel compounds with multifunctional carbon structure. 9. Molecular design, synthetic studies, and NMR investigation of several efficient chiral derivatizing reagents which give very large 19F NMR ?δ values in enantiomeric excess determination. J. Org. Chem. 38, 1812.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Kawamoto, T., Tanaka, A. (2001). Enzymatic Conversion of Organosilicon Compounds in Organic Solvents. In: Vulfson, E.N., Halling, P.J., Holland, H.L. (eds) Enzymes in Nonaqueous Solvents. Methods in Biotechnology, vol 15. Humana Press. https://doi.org/10.1385/1-59259-112-4:339

Download citation

  • DOI: https://doi.org/10.1385/1-59259-112-4:339

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-929-2

  • Online ISBN: 978-1-59259-112-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics