Skip to main content

Enantioselective Lipase-Catalyzed Transesterifications in Organic Solvents

  • Protocol
Enzymes in Nonaqueous Solvents

Part of the book series: Methods in Biotechnology ((MIBT,volume 15))

Abstract

Among the biocatalysts used in organic synthesis, lipases (triacylglycerol acyl hydrolases, E.C. 3.1.1.3) are the most frequently used. Because of their ability to discriminate between enantiomers and enantiotopic groups, they are utilized in kinetic resolutions of racemates and desymmetrizations of prostereogenic or meso-compounds to provide an easy access to enantiomerically pure building blocks (1-6). Protecting group techniques take advantage of the regioselectivity and chemoselectivity of lipase-catalyzed reactions (7-9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, C.-S. and Sih, C. J. (1989) General aspects and optimization of enantioselective biocatalysis in organic solvents: the use of lipases. Angew. Chem. Int. Ed. Engl. 28, 695–707.

    Article  Google Scholar 

  2. Boland, W., Fröβl, C., and Lorenz, M. (1991) Esterolytic and lipolytic enzymes in organic synthesis. Synthesis 1049–1072.

    Google Scholar 

  3. Faber, K. and Riva, S. (1992) Enzyme-catalyzed irreversible acyl transfer. Synthesis 895–910.

    Google Scholar 

  4. Santaniello, E., Ferraboschi, P., and Grisenti, P. (1993) Lipase-catalyzed transesterification in organic solvents: application to the preparation of enantiomerically pure compounds. Enzyme Microb. Technol. 15, 367–382.

    Article  CAS  Google Scholar 

  5. Theil, F. (1994) Diols as substrates in lipase-catalyzed enantioselective acylations-a brief review. Catal. Today 22, 517–536.

    Article  CAS  Google Scholar 

  6. Theil, F. (1995) Lipase-supported synthesis of biologically active compounds. Chem. Rev. 95, 2203–2227.

    Article  CAS  Google Scholar 

  7. Reidel, A. and Waldmann, H. (1993) Enzymatic protecting group techniques in bioorganic synthesis. J. Prakt. Chem. 335, 109–127.

    Article  CAS  Google Scholar 

  8. Waldmann, H. and Sebastian, D. (1994) Enzymatic protecting group techniques. Chem. Rev. 94, 911–937.

    Article  CAS  Google Scholar 

  9. Bashir, N. B., Phythian, S. J., Reason, A. J., and Roberts, S. M. (1995) Enzymatic esterification and de-esterification of carbohydrates: synthesis of naturally occurring rhamnopyranoside of p-hydroxybenzaldehyde and a systematic investigation of lipase-catalyzed acylation of selected aryl pyranosides. J. Chem. Soc. Perkin Trans. 1, 2203–2222.

    Article  Google Scholar 

  10. Reetz, M. T., Zonta, A., and Simpelkamp, J. (1995) Efficient heterogeneous biocatalysis by entrapment of lipases in hydrophobic sol-gel materials. Angew. Chem. Int. Ed. Engl. 34, 301–304.

    Article  CAS  Google Scholar 

  11. Cygler, M., Grochulski, P., Kazlauskas, R. J., Schrag, J. D., Bouthillier, F., Rubin, B., et al. (1994) A structural basis for the chiral preference of lipases. J. Am. Chem. Soc. 116, 3180–3186, and references cited therein.

    Article  CAS  Google Scholar 

  12. Kazlauskas, R. J., Weissfloch, A. N. E., Rappaport, A. T., and Cuccia, L. A. (1991) Rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. J. Org. Chem. 56, 2656–2665.

    Article  CAS  Google Scholar 

  13. Weissfloch, A. N. E. and Kazlauskas, R. J. (1995) Enantiopreference of lipase from Pseudomonas cepacia toward primary alcohols. J. Org. Chem. 56, 6959–6969.

    Article  Google Scholar 

  14. Lemke, K., Lemke, M., and Theil F. (1997) A three-dimensional predictive active site model for lipase from Pseudomonas cepacia. J. Org. Chem. 62, 6268–62731.

    Article  CAS  Google Scholar 

  15. Theil, F., Ballschuh, S., Schick, H., Haupt, M., Häfner, B., and Schwarz, S. (1988) Synthesis of (1R,4S)-(-)-4-hydroxy-2-cyclopentenyl acetate by a highly enantioselective enzyme-catalyzed transesterification in organic solvents. Synthesis 540–541.

    Google Scholar 

  16. Theil, F., Schick, H., Lapitskaya, M. A., and Pivnitsky, K. K. (1991) Investigation of the pancreatin-catalyzed acylation of cis-cyclopent-2-ene-1,4-diol with various trichloroethy land vinyl alkanoates. LiebigsAnn. Chem. 195–200.

    Google Scholar 

  17. Theil, F., Schick, H., Winter, G., and Reck, G. (1991) Lipase-catalyzed transesterification of meso-cyclopentane diols. Tetrahedron 47, 7569–7582.

    Article  CAS  Google Scholar 

  18. Djadchenko, M. A., Pivnitsky, K. K., Theil, F., and Schick, H. (1989) Enzymes in organic synthesis. Part 3. Synthesis of enantiomerically pure prostaglandin intermediates by enzyme-catalyzed transesterification of (1SR,2RS,5SR,6RS)-bicyclo[3.3.0]octane-2,6-diol with trichloroethyl acetate in an organic solvent. J. Chem. Soc. Perkin Trans 1 2001,2002.

    Google Scholar 

  19. Lemke, K., Ballschuh, S., Kunath, A., and Theil, F. (1997) An improved procedure for the lipase-catalyzed kinetic resolution of endo-endo-cis-bicyclo(3.3.0)octane-2,6-diol-synthesis of potential C2-symmetric enantiomerically pure bidentate auxiliaries. Tetrahedron: Asymmetry 8, 2051–2055.

    Article  CAS  Google Scholar 

  20. Weidner, J., Theil, F., and Schick, H. (1994) Kinetic resolution of (1RS,2SR)-2-(hydroxymethyl)cyclopentanol by a biocatalytic transesterification using lipase PS. Tetrahedron: Asymmetry 5, 751–754.

    Article  CAS  Google Scholar 

  21. Theil, F. and Ballschuh, S. (1996). Chemoenzymatic synthesis of both enantiomers of cispentacin. Tetrahedron: Asymmetry 7, 3565–3572.

    Article  CAS  Google Scholar 

  22. Theil, F., Costisella, B., and Schick, H. (1992) A correlation of configuration and 19F-NMR chemical shifts of (R)-(+)-Mosher esters of chiral cyclopentanediol derivatives. J. Prakt. Chem.-Chemiker-Zeitung 334, 85,86.

    Google Scholar 

  23. Theil, F., Weidner, J., Ballschuh, S., Kunath, A., and Schick, H. (1994) Kinetic resolution of acyclic 1,2-diols using a sequential lipase-catalyzed transesterification in organic solvents. J. Org. Chem. 59, 388–393.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Theil, F. (2001). Enantioselective Lipase-Catalyzed Transesterifications in Organic Solvents. In: Vulfson, E.N., Halling, P.J., Holland, H.L. (eds) Enzymes in Nonaqueous Solvents. Methods in Biotechnology, vol 15. Humana Press. https://doi.org/10.1385/1-59259-112-4:277

Download citation

  • DOI: https://doi.org/10.1385/1-59259-112-4:277

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-929-2

  • Online ISBN: 978-1-59259-112-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics