Advertisement

Choosing Hydrolases for Enantioselective Reactions Involving Alcohols Using Empirical Rules

  • Alexandra N. E. Weissfloch
  • Romas J. Kazlauskas
Part of the Methods in Biotechnology book series (MIBT, volume 15)

Abstract

With over 100 hydrolases available commercially, researchers need to choose the best hydrolase for their problem. One good way to choose a hydrolase is to use empirical rules or models that summarize earlier results.

Keywords

Primary Alcohol Secondary Alcohol Vinyl Acetate Hydrophobic Pocket Empirical Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Naemura, K. (1994) Stereoselectivity of enzymatic hydrolyses and acylations. J. Synth. Org. Chem. Jpn. 52, 49–58. (in Japanese)Google Scholar
  2. 2.
    Kazlauskas, R. J., Weissfloch, A. N. E., Rappaport, A. T., and Cuccia, L. A. (1991) A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. J. Org. Chem. 56, 2656–2665.CrossRefGoogle Scholar
  3. 3.
    Burgess, K. and Jennings, L. D. (1991) Enantioselective esterifications of unsaturated alcohols mediated by a lipase prepared from Pseudomonas sp. J. Am. Chem. Soc. 113, 6129–6139.CrossRefGoogle Scholar
  4. 4.
    Naemura, K., Ida, H., and Fukuda, R. (1993) Lipase YS-catalyzed enantioselective transesterification of alcohols of bicarbocyclic compounds. Bull. Chem. Soc. Jpn. 66, 573–577.CrossRefGoogle Scholar
  5. 5.
    Kim, M. J. and Cho, H. (1992) Pseudomonas lipases as catalysts in organic synthesis: specificity of lipoprotein lipase. J. Chem. Soc., Chem. Commun. 1411–1413.Google Scholar
  6. 6.
    Roberts, S. M. (1989) Use of enzymes as catalysts to promote key transformations in organic synthesis. Philos. Trans. R. Soc. Lon. B 324, 577–587.CrossRefGoogle Scholar
  7. 7.
    Orrenius, C., Öhrner, N., Rotticci, D., Mattson, A., Hult, K., and Norin, T. (1995) Candia antarctica lipase B catalyzed kinetic resolutions: substrate structure requirements for the preparation of enantiomerically enriched secondart alcohols. Tetrahedron: Asymmetry 6, 1217–1220.CrossRefGoogle Scholar
  8. 8.
    Janssen, A. J. M., Klunder, A. J. H., and Zwanenburg, B. (1991) Resolution of secondary alcohols by enzyme-catalyzed transeserification in alkyl carboxylates as the solvent. Tetrahedron 47, 7645–7662.CrossRefGoogle Scholar
  9. 9.
    Kazlauskas, R. J. and Weissfloch, A. N. E. (1997) A structure-based rationalization of the enantiopreference of subtilisin toward secondary alcohols and isosteric primary amines. J. Mol. Catal. B Enzymes 3, 65–72.CrossRefGoogle Scholar
  10. 10.
    Scilimati, A., Ngooi, T. K., and Sih, C. J. (1988) Biocatalytic resolution of (-)-hydroxyalkanoic esters. A strategy for enhancing the enantiomeric specificity of lipase-catalyzed ester hydrolysis. Tetrahedron Lett. 29, 4927–4930.CrossRefGoogle Scholar
  11. 11.
    Johnson, C. R., Golebiowski, A., McGill, T. K., and Steensma, D. H. (1991) Enantioselective synthesis of 6-cycloheptene-1,3,5-triol derivatives by enzymatic asymmetrization. Tetrahedron Lett. 32, 2597–2600.CrossRefGoogle Scholar
  12. 12.
    Kim, M. J. and Choi, Y. K. (1992) Lipase-catalyzed enantioselective transesterification of O-trityl 1,2-diols. Practical synthesis of (R)-tritylglycidol. J. Org. Chem. 57, 1605–1607.CrossRefGoogle Scholar
  13. 13.
    Gupta, A. K. and Kazlauskas, R. J. (1993) Substrate modification to increase the enantioselectivity of hydrolases. A route to optically-active cyclic ally lic alcohols. Tetrahedron: Asymmetry 4, 879–888.CrossRefGoogle Scholar
  14. 14.
    Adam, W., Mock-Knoblauch, C., and Saha-Möller, C. R. (1997) Kinetic resolution of hydroxy vinylsilanes by lipase-catalyzed enantioselective acetylation. Tetrahedron: Asymmetry 8, 1441–1444.CrossRefGoogle Scholar
  15. 15.
    Shimizu, M., Kawanami, H., and Fujisawa, T. (1992) A lipase mediated asymmetric hydrolysis of 3-acyloxy-1-octynes and 3-(E)-acyloxy-1-octenes. Chem. Lett. 107–110.Google Scholar
  16. 16.
    Rotticci, D., Orrenius, C., Hult, K., and Norin, T. (1997) Enantiomerically enriched bifunctional sec-alcohols prepared by Candida antarctica lipase B catalysis. Evidence of non-steric interactions. Tetrahedron: Asymmetry 8, 359–362.CrossRefGoogle Scholar
  17. 17.
    Theil, F., Lemke, K., Ballschuh, S., Kunath, A., and Schick, H. (1995) Lipasecatalysed resolution of 3-(aryloxy)-1,2-propanediol derivatives-towards an improved active site model of Pseudomonas cepacia lipase (Amano PS). Tetrahedron: Asymmetry 6, 1323–1344.CrossRefGoogle Scholar
  18. 18.
    Oberhauser, T., Faber, K., and Griengl, H. (1989) A substrate model for the enzymic resolution of esters of bicyclic alcohols by Candida cylindracea lipase. Tetrahedron 45, 1679–1682.CrossRefGoogle Scholar
  19. 19.
    Faber, K., Griengl, H., Hoenig, H., and Zuegg, J. (1994) On the prediction of the enantioselectivity of Candida rugosa lipase by comparative molecular field analysis. Biocatalysis 9, 227–239.CrossRefGoogle Scholar
  20. 20.
    Exl, C., Hoenig, H., Renner, G., Rogi-Kohlenprath, R., Seebauer, V., and Seufer-Wasserthal, P. (1992) How large are the active sites of the lipases from Candida rugosa and from Pseudomonas cepacia? Tetrahedron: Asymmetry 3, 1391–1394.CrossRefGoogle Scholar
  21. 21.
    Burgess, K. and Jennings, L. D. (1991) Enantioselective esterifications of unsat-urated alcohols mediated by a lipase prepared from Pseudomonas sp. J. Am. Chem. Soc. 113, 6129–6139.CrossRefGoogle Scholar
  22. 22.
    Bornscheuer, U., Herar, A., Kreye, L., Wendel, V., Capewell, A., Meyer, H. H., et al. (1993) Factors affecting the lipase catalyzed transesterification reactions of 3-hydroxy esters in organic solvents. Tetrahedron: Asymmetry 4, 1007–1016.CrossRefGoogle Scholar
  23. 23.
    Naemura, K., Fukuda, R., Murata, M., Konishi, M., Hirose, K., and Tobe, Y. (1995) Lipase-catalyzed enantioselective acylation of alcohols: a predictive active site model for lipase YS to identify which enantiomer of an alcohol reacts faster in this acylation. Tetrahedron: Asymmetry 6, 2385–2394.CrossRefGoogle Scholar
  24. 24.
    Naemura, K., Murata, M., Tanaka, R., Yano, M., Hirose, K., and Tobe, Y. (1996) Enantioselective acylation of alcohols catalyzed by lipase QL fromAlcaligenes sp.: a predictive active site model for lipase QL to identify the faster reacting enantiomer of an alcohol in this acylation. Tetrahedron: Asymmetry 7, 1581–1584.CrossRefGoogle Scholar
  25. 25.
    Toone, E. J., Werth, M. J., and Jones, J. B. (1990) Active site model for interpreting and predicting the specificity of pig liver esterase. J. Am. Chem. Soc. 112, 4946–4952.CrossRefGoogle Scholar
  26. 26.
    Provencher, L. and Jones, J. B. (1994) A concluding specification of the dimensions of the active site model of pig liver esterase. J. Org. Chem. 59, 2729–2732.CrossRefGoogle Scholar
  27. 27.
    Naemura, K., Takahashi, N., Ida, H., and Tanaka, S. (1991) Pig liver esterase-catalyzed hydrolyses of racemic diacetates of bicyclic compounds and interpretation of the enantiomeric specificity of PLE. Chem. Lett. 657–660.Google Scholar
  28. 28.
    Lemke, K., Lemke, M., and Theil, F. (1997) A three-dimensional predictive active site model for lipase from Pseudomonas cepacia. J. Org. Chem. 62, 6268–6273.CrossRefGoogle Scholar
  29. 29.
    Grabuleda, X., Jaime, C., and Guerrero, A. (1997) Estimation of the lipase PS (Pseudomonas cepacia) active site dimensions based on molecular mechanics calculations. Tetrahedron: Asymmetry 8, 3675–3683.CrossRefGoogle Scholar
  30. 30.
    Sayle, R. A. and Milner-White, E. J. (1995) RASMOL: biomolecular graphics for all. Trends Biochem. Sci. 20, 374–376.CrossRefGoogle Scholar
  31. 31.
    Uppenberg, J., Öhrner, N., Norin, M., Hult, K., Patkar, S., Waagen V., et al. (1995) Crystallographic and molecular modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols. Biochemistry 34, 16,838–16,851.CrossRefGoogle Scholar
  32. 32.
    Grochulski, P., Li, Y., Schrag, J. D., Bouthillier, F., Smith, P., Harrison, D., et al. (1993) Insights into interfacial activation from an open structure of Candida rugosa lipase. J. Biol. Chem. 268, 12,843–12,847.Google Scholar
  33. 33.
    Schrag, J. D., Li, Y. G., Cygler, M., Lang, D. M., Burgdorf, T., Hecht, H. J., et al. (1997) The open conformation of a Pseudomonas lipase. Structure 5, 187–202.CrossRefGoogle Scholar
  34. 34.
    Neidhart, D. J. and Petsko, G. A. (1988) The refined crystal structure of subtilisin Carlsberg at 2.5 resolution. Protein Eng. 2, 271–276.CrossRefGoogle Scholar
  35. 35.
    Kazlauskas, R. J. (2000) Molecular modeling in biocatalysis: explanations, predictions, limitations, and opportunities. Curr. Opin. Chem. Biol. 4, 81–88.CrossRefGoogle Scholar
  36. 36.
    Weissfloch, A. N. E. and Kazlauskas, R. J. (1995) Enantiopreference of lipase from Pseudomonas cepacia toward primary alcohols. J. Org. Chem. 60, 6959–6969.CrossRefGoogle Scholar
  37. 37.
    Tuomi, W. V. and Kazlauskas, R. J. (1999) Molecular basis for enantioselectivity of lipase from Pseudomonas cepacia toward primary alcohols. Modeling, kinetics and chemical modification of Tyr29 to increase or decrease enantioselectivity. J. Org. Chem. 64, 2638–2647.CrossRefGoogle Scholar
  38. 38.
    Ha, H.-J., Yoon, K.-N., Lee, S.-Y., Park, Y.-S., Lim, M.-S., and Yim, Y.-G. (1998) Lipase PS (Pseudomonas cepacia) mediated resolution of γ-substituted γ-((acetoxy)methyl)-γ-butyrolactones: complete stereochemical reversion by substituents. J. Org. Chem. 63, 8062–8066.CrossRefGoogle Scholar
  39. 39.
    Lampe, T. F. J., Hoffmann, H. M. R., and Bornscheuer, U. T. (1996) Lipase mediated desymmetrization of meso-2,6-di(acetoxymethyl)tetrahydropyran-4-one derivatives. An innovative route to enantiopure 2,4,6-trifunctionalized C-glycosides. Tetrahedron: Asymmetry 7, 2889–2900.CrossRefGoogle Scholar
  40. 40.
    Ehrler, J. and Seebach, D. (1990) Enantioselective saponification of substituted achiral 3-acyloxypropyl esters with lipases. Preparation of chiral derivatives of tris(hydroxymethyl)methane. LiebigsAnn. Chem. 379–388.Google Scholar
  41. 41.
    Wimmer, Z. (1992) A suggestion to the PPL active site model dilemma. Tetrahedron 48, 8431–8436.CrossRefGoogle Scholar
  42. 42.
    Guanti, G., Banfi, L., and Narisano, E. (1992) Chemoenzymic preparation of asymmetrized tris(hydroxymethyl)methane (THYM) and of asymmetrized bis(hydroxymethyl)acetaldehyde (BHYMA) as new highly versatile chiral building blocks. J. Org. Chem. 57, 1540–1554.CrossRefGoogle Scholar
  43. 43.
    Hultin, P. G. and Jones, J. B. (1992) Dilemma regarding the active site model for porcine pancreatic lipase. Tetrahedron Lett. 33, 1399–1402.CrossRefGoogle Scholar
  44. 44.
    Guanti, G., Banfi, L., and Narisano, E. (1990) Enzymes in organic synthesis: remarkable influence of a system on the enantioselectivity in PPL catalyzed monohydrolysis of 2-substituted 1,3-diacetoxypropanes. Tetrahedron: Asymmetry 1, 721–724.CrossRefGoogle Scholar
  45. 45.
    Morgan, B., Oehlschlager, A. C., and Stokes, T. M. (1992) Enzyme reactions in apolar solvent. 5. The effect of adjacent unsaturation on the PPL-catalyzed kinetic resolution of secondary alcohols. J. Org. Chem. 57, 3231–3236.CrossRefGoogle Scholar
  46. 46.
    Tanaka, M., Yoshioka, M., and Sakai, K. (1993) Highly asymmetric enzymic hydrolysis and transesterification of meso-bis(acetoxymethyl)-and bis(hydroxymethyl)cyclopentane derivatives: an insight into the active site model of Rhizopus delemar lipase. Tetrahedron: Asymmetry 4, 981–996.CrossRefGoogle Scholar
  47. 47.
    Hof, R. P. and Kellogg, R. M. (1996) Lipase AKG mediated resolutions of α,α-disubstituted 1,2-diols in organic solvents: remarkably high regio-and enantio-selectivity. J. Chem. Soc., Perkin Trans. I 2051–2060.Google Scholar
  48. 48.
    Chen, S. T. and Fang, J. M. (1997) Preparation of optically active tertiary alcohols by enzymatic methods. Application to the synthesis of drugs and natural products, J. Org. Chem. 62, 4349–4357.CrossRefGoogle Scholar
  49. 49.
    Cotterill, I. C., Sutherland, A. G., Roberts, S. M., Grobbauer R., Spreitz, J., and Faber, K. (1991) Enzymatic resolution of sterically demanding bicyclo[3.2.0]heptanes: evidence for a novel hydrolase in crude porcine pancreatic lipase and the advantages of using organic media for some of the biotransformations. J. Chem. Soc., Perkin Trans. I 1365–1368.Google Scholar
  50. 50.
    Mori, K., Hazra, B. G., Pfeiffer, R. J., Gupta, A. K., and Lindgren, B. S. (1987) Synthesis andbioactivity of optically-active forms of 1-methyl-2-cyclohexen-1-ol, an aggregation pheromone of’ Dendroctonus pseudotsugae. Tetrahedron 43, 2249–2254.Google Scholar
  51. 51.
    Johnston, B. R., Morgan, B., Oehlschlager, A. C., and Ramaswamy, S. (1991) A convenient synthesis of both enantiomers of seudenol and their conversion to 1-methyl-2-cyclohexen-1-ol. Tetrahedron: Asymmetry 2, 377–380.CrossRefGoogle Scholar
  52. 52.
    Orrenius, C., Norin, T., Hult, K., and Carrea, G. (1995) The Candida antarctica lipase B catalysed kinetic resolution of seudenol in non-aqueous media of controlled water activity. Tetrahedron: Asymmetry 6, 3023–3030.CrossRefGoogle Scholar
  53. 53.
    Bornscheuer, U., Schapoehler, S., Scheper, T., and Schuegerl, K. (1991) Influences of reaction conditions on the enantioselective transesterification using Pseudomonas cepacia lipase. Tetrahedron: Asymmetry 2, 1011–1014.CrossRefGoogle Scholar
  54. 54.
    Hirose, Y., Kariya, K., Sasaki, I., Kurono, Y., Ebiike, H., and Achiwa, K. (1992) Drastic solvent effect on lipase-catalyzed enantioselective hydrolysis of prochiral 1,4-dihydropyridines. Tetrahedron Lett. 33, 7157–7160.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Alexandra N. E. Weissfloch
    • 1
  • Romas J. Kazlauskas
    • 2
  1. 1.Chemica Technologies Inc.Bend
  2. 2.Department of ChemistryMcGill UniversityMontréalCanada

Personalised recommendations