Skip to main content

Immobilization of Enzymes and Control of Water Activity in Low-Water Media

Properties and Applications of Celite R-640 (Celite Rods)

  • Protocol
Enzymes in Nonaqueous Solvents

Part of the book series: Methods in Biotechnology ((MIBT,volume 15))

Abstract

Celite R-640 is a chemically inert, silica-based matrix that consists of diatomaceous earth broken up and subsequently recalcined to create porous particles with controlled pore sizes (1). This type of porous Celite differs from Celite powder in its capacity to adsorb water (more than 90% of Celite weight). Recently, it has been demonstrated that Celite R-640 in organic solvent adsorbs and releases water such that water activity (aw) is maintained constant in a reaction system within defined ranges of water concentrations (2,3). Celite R-640 rods can be used not only as support for enzyme adsorption (2) but also as additives in reactions catalyzed by immobilized enzymes. These features make Celite R-640 a practical and simple tool for avoiding some of the problems related to the variation of the water activity/ concentration occurring in biotransformations in low-water media. However, Celite R-640 cannot replace hydrated salts (4) in a large number of contexts because, at present, there is no established method for fixing the water activity at different values by using Celite R-640. In the following sections the properties of Celite R-640 and their applications to biotransformations in organic solvents are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Livingston, A. G. (1991) Biodegradation of 3,4-dichloroaniline in a fluidized bed bioreactor and a steady-state biofilm kinetic model. Biotechnol. Bioeng. 38, 260–272.

    Article  CAS  Google Scholar 

  2. Ebert, C., Gardossi, L., and Linda, P. (1998) Activity of immobilised penicillin amidase in toluene at controlled water activity. J. Mol. Catal. B: Enzymatic 5, 241–244.

    Article  CAS  Google Scholar 

  3. De Martin, L., Ebert, C., Garau, G., Gardossi, L., and Linda, P. (1999) Penicillin G amidase in low-water media: immobilisation and control of water activity by means of Celite rods. J. Mol. Catal. B: Enzymatic 6, 437–445.

    Article  Google Scholar 

  4. Kvittingen, L., Sjursnes, B., Anthonsen, T., and Halling, P. J. (1992) Use of salt hydrates to buffer optimal water level during lipase catalysed synthesis in organic media: a practical procedure for organic chemists. Tetrahedron 48, 2793–2802.

    Article  CAS  Google Scholar 

  5. Adlercreutz, P. (1991) On the importance of the support material for enzymatic synthesis in organic media. Eur. J. Biochem. 199, 609–614.

    Article  CAS  Google Scholar 

  6. Valiverty, R., Johnston, G. A., Suckling, C. J., and Halling, P. J. (1991) Solvent effects on biocatysis in organic systems: equilibrium position and rates of lipase catalyzed esterification. Biotechnol. Bioeng. 38, 1137–1143.

    Article  Google Scholar 

  7. Kaga, H., Siegmund, B., Neufellner, E., Faber, K., and Paltauf, F. (1994) Stabilization of candida lipase against acetaldehyde by adsorption onto Celite. Biotechnol. Tech. 8, 369–374.

    Article  CAS  Google Scholar 

  8. Furukawa, S. Y. and Kawakami, K. (1998) Characterization of Candida rugosa lipase entrapped into organically modified silicates in esterification of methanol with butyric acid. J. Ferment. Bioeng. 85, 240–242.

    Article  CAS  Google Scholar 

  9. Bisht, K. S., Henderson, L. A., Gross, R. A., Kaplan, D. L., and Swift, G. (1997) Enzyme-catalyzed ring-opening polymerization of ω-pentadecalactone. Macro-molecules 30, 2705–2711.

    Article  CAS  Google Scholar 

  10. Johansson, A., Mosbach, K., and Mansson, M. O. (1995) Horse liver alcohol dehydrogenase can accept NADP+as coenzyme in high concentrations of acetonitrile. Eur. J. Biochem. 227, 551–555.

    Article  CAS  Google Scholar 

  11. Adlercreutz, P. (1993) Activation of enzymes in organic media at low water activity by polyols and saccharides. Biochim. Biophys. Acta 1163, 144–148.

    Article  CAS  Google Scholar 

  12. Hanley, A. B., Furniss, C. S. M., Kwiatkowska, K. A., and Mackie, A. R. (1991) The manipulation of DNA with restriction enzymes in low water systems. Biochim. Biophys. Acta 1074, 40–44.

    CAS  Google Scholar 

  13. Kim, J. and Kim, B. G. (1996) Effect of the hydration state of supports before lyophilization on subtilisin-A activity in organic media. Biotechnol. Bioeng. 50, 687–692.

    Article  CAS  Google Scholar 

  14. Vyazmensky, M. and Geresh, S. (1998) Substrate specificity and product stereochemistry in the dehalogenation of 2-haloacids with the crude enzyme preparation from Pseudomonas putida. Enzyme Microb. Technol. 22, 323–328.

    Article  CAS  Google Scholar 

  15. Capellas, M., Benaiges, M. D., Caminal, G., Gonzalez, G., Lopez-Santìn, J., and Clapés, P. (1996) Enzymatic synthesis of a CCK-8 tripeptide fragment in organic media. Biotechnol. Bioeng. 50, 700–708.

    Article  CAS  Google Scholar 

  16. Lòpez-Fandino, R., Gill, I., and Vulfson, E. N. (1994) Enzymatic catalysis in heterogenous mixtures of substrates: the role of the liquid phase and the effect of adjuvants. Biotechnol. Bioeng. 43, 1016–1023.

    Article  Google Scholar 

  17. El-Sayed, A. H., Mahmoud, W. M., and Coughlin, R. W. (1990) Comparative study of production of dextransucrase and dextran by cells of Leuconostoc mesenteroides immobilized on Celite and calcium alginate beads. Biotechnol. Bioeng. 36, 83–91.

    Article  CAS  Google Scholar 

  18. Wang, S. D. and Wang, D. I. C. (1989) Cell adsorption and local accumulation of extracellular polysaccharide in an immobilized Acinetobacter calcoaceticus. Biotechnol. Bioeng. 34, 1261–1267.

    Article  CAS  Google Scholar 

  19. Chun, G. T. and Agathos, S. N. (1991) Comparative studies of physiological and environmental effects on the production of cyclosporin A in suspended and immobilized cells of Tolypocladium inflatum. Biotechnol. Bioeng. 37, 256–265.

    Article  CAS  Google Scholar 

  20. Keshavarz, T., Eglin, R., Walker, E., Bucke, C., Holt, G., Bull, A. T., et al. (1990) The large scale immobilization of penicillium chrysogenum: batch and continuous operation in air-lift reactor. Biotechnol. Bioeng. 36, 763–770.

    Article  CAS  Google Scholar 

  21. Chun, G.-T. and Agathos, S. N. (1993) Dynamic response of immobilized cells to pulse addition of L-valine in cyclosporin A biosynthesis. J. Biotechnol. 27, 283–294.

    Article  CAS  Google Scholar 

  22. Huang, X. L., Catignani, G. L., and Swaisgood, H. E. (1997) Comparison of the properties of trypsin immobilized on 2 CeliteTM derivatives. J. Biotechnol. 53, 21–27.

    Article  CAS  Google Scholar 

  23. Gelo-Pujic, M., Guibé-Jampel, E., and Loupy, A. (1997) Enzymatic glycosidations in dry media on mineral supports. Tetrahedron 53, 17,247–17,252.

    Article  CAS  Google Scholar 

  24. Basso, A., DeMartin, L., Ebert, C., Gardossi, L., and Linda, P. (2000) High isolated in thermodynamically controlled peptide synthesis in toluene catalysed by thermolysin adsorbed on Celite R-640. Chem. Commun. 467,468.

    Google Scholar 

  25. Clifford, J. (1975) Properties of water in capillaries and thin films, in Water: A Comprehensive Treatise, (Franks, F., ed.), Plenum, New York, pp. 75–133.

    Google Scholar 

  26. Allen, S. G., Stephenson, P. C. L., and Strange, J. H. (1998) Internal surfaces of porous media studied by nuclear magnetic resonance cryoporometry. J. Chem. Phys. 108, 8195–8198.

    Article  CAS  Google Scholar 

  27. Overloop, K. and Van Gerven, L. (1993), Exchange and cross-relaxation in adsorbed water. J. Magn. Reson. A 101, 147–156.

    Article  CAS  Google Scholar 

  28. Takamuku, T., Yamagami, M., Wakita, H., Masuda, Y., and Yamaguchi, T. (1997) Thermal property, structure and dynamics of supercooled water in porous silica by calorimetry, neutron scattering and NMR relaxation. J. Phys. Chem. B 101, 5730–5739.

    Article  CAS  Google Scholar 

  29. Barros, R. J., Wehtje, E., and Adlercreutz, P. (1998) Mass transfer studies on immobilized a-chymotrypsin biocatalysts prepared by deposition for use in organic medium. Biotechnol. Bioeng. 59, 364–373.

    Article  CAS  Google Scholar 

  30. Reslow, M., Adlercreutz, P., and Mattiasson, B. (1988) On the importance of the support material for bioorganic synthesis. Eur. J. Biochem. 172, 573–578.

    Article  CAS  Google Scholar 

  31. Baldaro, E., D’Arrigo, P., Pedrocchi-Fantoni, G., Rosell, C. M., Servi, S., and Terreni, M. (1993) Pen G acylase catalyzed resolution of phenylacetate esters of secondary alcohols. Tetrahedron: Asymmetry 4, 1031–1034.

    Article  CAS  Google Scholar 

  32. Basso, A., DeMartin, L., Ebert, C., Gardossi, L., and Linda, P. (2000) Controlling the hydration of covalently immobilised penicillin G amidase in low-water medium: properties and use of Celite R-640. J. Mol. Catal. B: Enzymatic 8, 245–253.

    Article  CAS  Google Scholar 

  33. Halling, P. J. (1994) Thermodynamic predictions for biocatalysis in non conventional media: theory, tests, and recommendations for experimental design and analysis. Enzyme Microb. Technol. 16, 178–206.

    Article  CAS  Google Scholar 

  34. Zacharis, E., Omar, I. C., Partridge, J., Robb, D. A., and Halling, P. J. (1997) Selection of salt hydrate pairs for use in water control in enzyme catalysis in organic solvents. Biotechnol. Bioeng. 55, 367–374.

    Article  CAS  Google Scholar 

  35. Ebert, C., Gardossi, L., and Linda, P. (1996) Control of enzyme hydration in penicillin amidase catalysed synthesis of amide bond. Tetrahedron Lett, 37, 9377–9380.

    Article  CAS  Google Scholar 

  36. Basso, A., DeMartin, L., Ebert, C., Gardossi, L., Linda, P., and Zlatev, V. Activity of covalently immobilised PGA in water miscible solvents at controlled aw. J. Mol. Catal. B: Enzymatic, in press.

    Google Scholar 

  37. Valivety, R. H., Halling, P. J., Peilow, A. D., and Macrae, A. R. (1994) Relationship between water activity and catalytic activity of lipases in organic media. Eur. J. Biochem. 222, 461–466.

    Article  CAS  Google Scholar 

  38. Parker, M. C., Moore, B.D.,and Blaker, A. J. (1994) In situ hydration of enzymes in non polar organic media can increase the catalytic rate. Biocatalysis 10, 269–277.

    Article  CAS  Google Scholar 

  39. Halling, P. J. (1992) Salt hydrates for water activity control with biocatalysts in organic media. Biotechnol. Tech. 6, 271–276.

    Article  CAS  Google Scholar 

  40. Clapés, P. and Adlercreutz, P. (1991) Substrate specificity of α-chymotrypsin-catalysed esterification in organic media. Biochim. Biophys. Acta 1118, 70–76.

    Article  Google Scholar 

  41. Kuhl, P. and Halling, P. J. (1991) Salt hydrates buffer water activity during chymotrypsin-catalysed peptide synthesis. Biochim. Biophys. Acta 1078, 326–328.

    Article  CAS  Google Scholar 

  42. Wehtje, E., Svensson, I., Adlercreutz, P., and Mattiasson, B., (1993) Continuous control of water activity during biocatalysis in organic media. Biotechnol. Tech. 7, 873–878.

    Article  CAS  Google Scholar 

  43. Otamiri, M., Adlercreutz, P., and Mattiasson, B. (1994) A differential scanning calorimetric study of chymotrypsininthe presence of added polymers. Biotechnol. Bioeng. 44, 73–78.

    Article  CAS  Google Scholar 

  44. Hyun, C. K., Kim, J. H., and Ryu, D. D. Y. (1993) Enhancement effect of water activity on enzymatic synthesis of cephalexin. Biotechnol. Bioeng. 42, 800–806.

    Article  CAS  Google Scholar 

  45. Mensah, P., Gainer, J. L., and Carta, G. (1996) Adsorptive control of water in esterification with immobilized enzymes: I. Batch reactor behaviour. Biotechnol. Bioeng. 20, 434–444.

    Google Scholar 

  46. Goldberg, M., Parvaresh, F., Thomas, D., and Legoy, M. D. (1988) Enzymatic synthesis with continuous measurement of water activity. Biochim. Biophys. Acta 957, 359–362.

    Article  CAS  Google Scholar 

  47. Kwon, S. J., Song, K. M., Hong, W. H., and Rhee, J. S. (1994) Removal of water produced from lipase-catalyzed esterification in roganic solvent by pervaporation. Biotechnol. Bioeng. 46, 393–395.

    Article  Google Scholar 

  48. Bloomer, S., Adlecreutz, P., and Mattianson, B. (1992) Facile synthesis of fatty acid esters in high yields. Enzyme. Microb. Technol. 14, 546–552.

    Article  CAS  Google Scholar 

  49. Partridge, J., Hutcheon, G. A., Moore, B. D., and Halling, P. J. (1996) Exploiting hydration hysteresis for high activity of cross-linked subtilisin crystals in acetonitrile. J. Am. Chem. Soc. 118, 12,873–12,877.

    Article  CAS  Google Scholar 

  50. Partridge, J., Halling, P. J., and Moore, B. D. (1998) Practical route to high activity enzyme preparations for synthesis in organic media. Chem. Commun. 841,842.

    Google Scholar 

  51. Kaul, R. and Mattiasson, B. (1993) Improving the shelf life of enzymes by storage under anhydrous apolar solvent. Biotechnol. Tech. 7, 585–590.

    Article  CAS  Google Scholar 

  52. Snyder, L. R. and Kirkland, J. J. (1979) Introduction to Modern Liquid Chromatography. Wiley, New York, pp. 248–250.

    Google Scholar 

  53. Gorman, L. S. and Dordick, J. S. (1992) Organic solvents strip water off enzymes. Biotechnol. Bioeng. 39, 392–397.

    Article  CAS  Google Scholar 

  54. Reichardt, C. (1988) Solvents and Solvent Effects in Organic Chemistry. VCH, Weinheim.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Gardossi, L. (2001). Immobilization of Enzymes and Control of Water Activity in Low-Water Media. In: Vulfson, E.N., Halling, P.J., Holland, H.L. (eds) Enzymes in Nonaqueous Solvents. Methods in Biotechnology, vol 15. Humana Press. https://doi.org/10.1385/1-59259-112-4:151

Download citation

  • DOI: https://doi.org/10.1385/1-59259-112-4:151

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-929-2

  • Online ISBN: 978-1-59259-112-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics