Skip to main content

Methods for Measurement and Control of Water in Nonaqueous Biocatalysis

  • Protocol
Enzymes in Nonaqueous Solvents

Part of the book series: Methods in Biotechnology ((MIBT,volume 15))

Abstract

It is generally recognized that the small level of remaining water is critical to the behavior of biocatalysts used in mainly non-aqueous (e.g., organic) media. Most biocatalysts are inactive if fully dehydrated, and the reaction rate is stimulated by increasing hydration, at least at first. The rate of the desired reaction can become slower again if water levels increase too much, particularly when a hydrolytic side reaction becomes significant. The water level will also affect the equilibrium position of reactions in which it is a reactant. Most often, the desired synthesis will be the reversal of a hydrolysis or in competition with a hydrolytic side reaction. In such cases, the equilibrium yield will increase as the water level is reduced. Fuller details of these effects of water can be found in recent reviews of the field ( 1-7 ). Some further examples are found elsewhere in this volume (Chapters 12 and 13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Gomez-Puyou, M. T. and Gomez-Puyou, A. (1998) Enzymes in low water systems. Crit. Rev. Biochem. Mol. Biol. 33, 53–89.

    Article  Google Scholar 

  2. Klibanov, A. M. (1997) Why are enzymes less active in organic solvents than in water? Trends Biotechnol. 15, 97–101.

    Article  CAS  Google Scholar 

  3. Lortie, R. (1997) Enzyme catalyzed esterification. Biotechnol. Adv. 15, 1–15.

    Article  CAS  Google Scholar 

  4. Vermue, M. H. and Tramper, J. (1995) Interrelations of chemistry and biotechnology 5. Biocatalysis in nonconventional media-medium engineering aspects. PureAppl. Chem. 67, 345–373.

    Article  Google Scholar 

  5. Carrea, G, Ottolina, G., and Riva, S (1995) Role of solvents in the control of enzyme selectivity in organic media. Trends Biotechnol. 13, 63–70.

    Article  CAS  Google Scholar 

  6. Bell, G., Halling, P. J., Moore, B. D., Partridge, J., and Rees, D. G. (1995) Biocatalyst behaviour in low-water systems. Trends Biotechnol. 13, 468–473.

    Article  CAS  Google Scholar 

  7. Koskinen, A. and Klibanov, A. M. (1995) Enzymatic Reactions in Organic Media, Chapman & Hall, Andover.

    Google Scholar 

  8. Halling, P. J. (1994) Thermodynamic predictions for biocatalysis in non-conventional media: theory, tests and recommendations for experimental design and analysis. Enzyme Microb. Technol. 16, 178–206.

    Article  CAS  Google Scholar 

  9. Cassells, J. M. and Halling, P. J. (1988) Effect of thermodynamic water activity on thermolysin-catalysed peptide synthesis in organic two-phase systems. Enzyme Microb. Technol. 10, 486–491.

    Article  CAS  Google Scholar 

  10. Greenspan, L. (1977) Humidity fixed points of binary saturated aqueous solutions. J. Res. Natl. Bur. Stand. A 81A, 89–96.

    Google Scholar 

  11. Valivety, R. H., Halling, P. J., and Macrae, A. R. (1992) Rhizomucor miehei lipase remains highly active at water activity below 0.0001. FEBS Lett. 301, 258–260.

    Article  CAS  Google Scholar 

  12. Bell, G., Janssen, A. M. S., and Halling, P. J. (1997) Water activity fails to predict critical hydration level for enzyme activity in polar organic solvents: interconversion of water concentrations and activities. Enzyme Microb. Technol. 20, 471–477. (Because of printing errors in the calculations appendix of this article, a correct version is given as an appendix in this chapter.)

    Article  CAS  Google Scholar 

  13. Parker, M. C., Moore, B. D., and Blacker, A. J. (1995) Measuring enzyme hydration in nonpolar organic-solvents using NMR. Biotechnol. Bioeng. 46, 452–458.

    Article  CAS  Google Scholar 

  14. Dolman, M., Halling, P. J., Moore, B. D., and Waldron, S. (1997) How dry are anhydrous enzymes? (Measurement of residual and buried 18-O labelled water molecules using mass spectrometry.) Biopolymers 41, 313–321.

    Article  CAS  Google Scholar 

  15. Partridge, J., Halling, P. J., and Moore, B. D. (1998) A practical route to high activity enzyme preparations for synthesis in organic media. J. Chem. Soc. Chem. Commun. 841,842.

    Google Scholar 

  16. Izumoto, E., Fukuda, H., and Nojima, Y. (1992) Feedforward/feedback control of interesterification of fats and oils using a microaqueous bioreactor. Chem. Eng. Sci. 47, 2351–2356.

    Article  CAS  Google Scholar 

  17. Goldberg, M., Thomas, D., and Legoy, M.-D. (1990) The control of lipasecatalysed transesterification and esterification reaction rates. Effects of substrate polarity, water activity and water molecules on enzyme activity. Eur. J. Biochem. 190, 603–609.

    Article  CAS  Google Scholar 

  18. Goldberg, M., Thomas, D., and Legoy, M.-D. (1990) Water activity as a key parameter of synthesis reactions: the example of lipase in biphasic (liquid/solid) media. Enzyme Microb. Technol. 12, 976–981.

    Article  CAS  Google Scholar 

  19. Khan, S. A., Halling, P. J., and Bell, G. (1990) Measurement and control of water activity with an aluminium oxide sensor in organic two-phase reaction systems for enzymic catalysis. Enzyme Microb. Technol. 12, 453–458.

    Article  CAS  Google Scholar 

  20. Rosell, C. M., Vaidya, A. M., and Halling, P. J. (1996) Continuous in-situ water activity control for organic phase biocatalysis in a packed bed hollow fiber reactor. Biotechnol. Bioeng. 49, 284–289.

    Article  CAS  Google Scholar 

  21. Ujang, Z., Alsharbati, N., and Vaidya, A. M. (1997) Organic-phase enzymatic esterification in a hollow fiber membrane reactor with in situ gas-phase water activity control. Biotechnol. Prog. 13, 39–42.

    Article  CAS  Google Scholar 

  22. Napier, P. E., Lacerda, H. M., Rosell, C. M., Valivety, R. H., Vaidya, A. M., and Halling, P. J. (1996) Enhanced organic phase enzymatic esterification with continuous water removal in a controlled air-bleed evacuated-headspace reactor. Biotechnol. Prog. 12, 47–50.

    Article  CAS  Google Scholar 

  23. Halling, P. J. (1992) Salt hydrates for water activity control with biocatalysts in organic media. Biotecnol. Technol. 6, 271–276.

    Article  CAS  Google Scholar 

  24. Zacharis, E., Omar, I. C., Partridge, J., Robb, D. A., and Halling, P. J. (1997) Selection of salt hydrate pairs for use in water control in enzyme catalysis in organic solvents. Biotechnol. Bioeng. 55, 367–374.

    Article  CAS  Google Scholar 

  25. Rosell, C.M. and Vaidya, A. M. (1995) Twin-core packed bed reactors for organic phase enzymatic esterification with water activity control. Appl. Microbiol. Biotechnol. 44, 283–286.

    Article  CAS  Google Scholar 

  26. Hessbruegge, B. J. and Vaidya, A. M. (1997) Preparation and characterization of salt hydrates encapsulated in polyamide membranes. J. Membrane Sci. 128, 175–182.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Bell, G. et al. (2001). Methods for Measurement and Control of Water in Nonaqueous Biocatalysis. In: Vulfson, E.N., Halling, P.J., Holland, H.L. (eds) Enzymes in Nonaqueous Solvents. Methods in Biotechnology, vol 15. Humana Press. https://doi.org/10.1385/1-59259-112-4:105

Download citation

  • DOI: https://doi.org/10.1385/1-59259-112-4:105

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-929-2

  • Online ISBN: 978-1-59259-112-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics