Advertisement

Enzymatic Transformations in Suspensions (II)

  • Adrie J. J. Straathof
  • Mike J. J. Litjens
  • Joseph J. Heijnen
Part of the Methods in Biotechnology book series (MIBT, volume 15)

Abstract

Biotransformations in organic media with none of the components being in suspension are rare. As enzymes are virtually insoluble in organic solvents, homogeneous reactions are only feasible if the enzyme is solubilized by, for example, chemical modification (1) or coating it with a lipid (2). In general, one or more components are present in the reaction mixture in solid state (i.e., the enzyme, substrate[s], product[s], and adsorbents [e.g., molecular sieves or a mixture of a salt and its hydrate]). Thus, the majority of enzymatic transformations in organic media are suspension reactions. Interestingly, Kuhl et al. (3) described a reaction where as many as five solids (chymotrypsin powder, two amino-acid-derived substrates, one peptide product, and partly hydrated Na2CO3) were suspended in hexane. In this chapter, we will deal with enzymatic reactions in suspension where at least one of the reactants (substrate or product) is only partially dissolved. In practice, this means that the actual biotransformation is preceded by the dissolution of substrate and/or followed by the precipitation of product.

Keywords

Solid Substrate Eutectic Mixture Kinetic Resolution Fatty Amide Enzymatic Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Inada, Y., Takahashi, K., Yoshimoto, T., Ajima, A., Matsushima, A., and Saito, Y. (1986) Application of polyethylene glycol-modified enzymes in biotechnological processes: organic solvent-soluble enzymes. Trends Biotechnol. 4, 950–953.Google Scholar
  2. 2.
    Okahata, Y. and Mori, T. (1997) Lipid-coated lipase as efficient catalyst in organic media. Trends Biotechnol. 15, 50–53.CrossRefGoogle Scholar
  3. 3.
    Kuhl, P., Halling, P. J., and Jakubke, H. D. (1990) Chymotrypsin suspended in organic solvents with salt hydrates is a good catalyst for peptide synthesis from mainly undissolved reactants. Tetrahedron Lett. 31, 5213–5216.CrossRefGoogle Scholar
  4. 4.
    Gill, I. and Vulfson, E. (1993) Enzymatic synthesis of short peptides in heterogeneous mixtures of substrates. J. Am. Chem. Soc. 115, 3348–3348.CrossRefGoogle Scholar
  5. 5.
    López-Fandiño, R., Gill, I., and Vulfson, E. (1994) Enzymatic catalysis in heterogeneous mixtures of substrates: the role of the liquid phase and the effects of “adjuvants.” Biotechnol. Bioeng. 43, 1016–1023.CrossRefGoogle Scholar
  6. 6.
    Erbeldinger, M., Ni, X., and Halling, P. J. (1998) Effect of water and enzyme concentration on thermolysin-catalyzed solid-to-solid peptide synthesis. Biotechnol. Bioeng. 59, 68–72.CrossRefGoogle Scholar
  7. 7.
    Ljunger, G., Adlercreutz, P., and Mattiasson, B. (1994) Lipase catalyzed acyla-tion of glucose. Biotechnol. Lett. 16, 1167–1172.CrossRefGoogle Scholar
  8. 8.
    Ducret, A., Giroux, A., Trani, M., and Lortie, R. (1995) Enzymatic preparation of biosurfactants from sugars or sugar alcohols and fatty acids in organic media under reduced pressure. Biotechnol. Bioeng. 48, 214–221.CrossRefGoogle Scholar
  9. 9.
    Van Rantwijk, F., Woudenberg-van Oosterom, M., and Sheldon, R. A. (1999) Glycosidase-catalysed synthesis of alkyl glycosides. J. Mol. Catal. B. Enzym. 6, 511–532, and references cited therein.CrossRefGoogle Scholar
  10. 10.
    Weiss, A. (1990) Enzymatische Herstellung von festen Fettsäuremonoglyceriden. Fat Sci. Technol. 10, 392–396.Google Scholar
  11. 11.
    Bornscheuer, U. T. (1995) Lipase-catalyzed syntheses of monoacylglycerols. Enzyme Microb. Technol. 17, 578–586.CrossRefGoogle Scholar
  12. 12.
    Cao, L., Fischer, A., Bornscheuer, U. T., and Schmid, R. D. (1997) Lipase-catalyzed solid phase synthesis of sugar fatty acid esters. Biocatal. Biotransform. 14, 269–283.CrossRefGoogle Scholar
  13. 13.
    Otto, R. T., Bornscheuer, U. T., Scheib, H., Pleiss, J., Syldatk, C., and Schmid, R. D. (1998) Lipase-catalyzed esterification of unusual substrates: synthesis of glucuronic acid and ascorbic acid (vitamin C) esters. Biotechnol. Lett. 20, 1091–1094.CrossRefGoogle Scholar
  14. 14.
    Litjens, M. J. J., Straathof, A. J. J., Jongejan, J. A., and Heijnen, J. J. (1999) Synthesis of primary amides by lipase-catalyzed amidation of carboxylic acids with ammonium salts in an organic solvent. Chem. Commun. 1255,1256.Google Scholar
  15. 15.
    Maugard, T., Remaud-Simeon, M., Petre, D., and Monsan, P. (1997) Enzymatic synthesis of glycamide surfactants by amidification reaction. Tetrahedron 53, 5185–5194.CrossRefGoogle Scholar
  16. 16.
    Halling, P. J., Eichhorn, U., Kuhl, P., and Jakubke, H. D. (1995) Thermodynamics of solid-to-solid conversion and application to enzymic peptide synthesis. Enzyme Microb. Technol. 17, 601–606.CrossRefGoogle Scholar
  17. 17.
    Woudenberg-van Oosterom, M., Van Rantwijk, F., and Sheldon, R. A. (1996) Regioselective acylation of disaccharides in tert-butyl alcohol catalyzed by Candida antarctica lipase. Biotechnol. Bioeng. 49, 328.CrossRefGoogle Scholar
  18. 18.
    Gill, I. and Vulfson, E. (1994) Enzymic catalysis in heterogeneous eutectic mixtures of substrates. Trends Biotechnol. 12, 118–122.CrossRefGoogle Scholar
  19. 19.
    Ricca, J. M. and Crout, D. H. G. (1993) Selectivity and specificity in substrate binding to proteases: novel hydrolytic reactions catalysed by α-chymotrypsin suspended in organic solvents with low water content and mediated by ammonium hydrogen carbonate. J. Chem. Soc. Perkin Trans. 1, 1225–1233.CrossRefGoogle Scholar
  20. 20.
    Furui, M., Furtani, T., Shibatani, T., Nakamoto, Y., and Mori, T (1996) A membrane reactor combined with crystallizer for production of optically active (2R,3S)-3-(4-methoxyphenyl)glycidic acid methyl ester. J. Ferm. Bioeng. 81, 21–25.CrossRefGoogle Scholar
  21. 21.
    Wolff, A., van Asperen, V., Straathof, A. J. J., and Heijnen, J. J. (1999) Potential of enzymatic kinetic resolution using solid substrates suspension: improved yield, productivity, substrate concentration, and recovery. Biotechnol. Prog. 15, 216–227.CrossRefGoogle Scholar
  22. 22.
    Kasche, V. and Galunsky, B. (1995) Enzyme catalyzed biotransformations in aqueous two-phase systems with precipitated substrate and/or product. Biotechnol. Bioeng. 45, 261–267.CrossRefGoogle Scholar
  23. 23.
    Wolff, A., Zhu, L., Wong, Y. W., Straathof, A. J. J., Jongejan, J. A., and Heijnen, J. J. (1999) Understanding the influence of temperature change and cosolvent addition on conversion rate of enzymatic suspension reactions based on regime analysis. Biotechnol. Bioeng. 62, 125–134.CrossRefGoogle Scholar
  24. 24.
    Erbeldinger, M., Ni, X., and Halling, P. J. (1998) Enzymatic synthesis with mainly undissolved substrates at very high concentrations. Enzyme Microb. Technol. 23, 141–148.CrossRefGoogle Scholar
  25. 25.
    Wolff, A., Zhu, L., Kielland, V., Straathof, A. J. J., Jongejan, J. A., and Heijnen, J. J. (1997) Simple dissolution-reaction model for enzymatic conversion of suspension of solid substrate. Biotechnol. Bioeng. 56, 433–440.CrossRefGoogle Scholar
  26. 26.
    Opsahl, R. (1992) Amides, fatty acid, in Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., vol. 2 (Howe-Grant, M., ed.), Wiley, New York, pp. 346–356.Google Scholar
  27. 27.
    Cravatt, B. F., Prospero-Garcia, O., Siuzdak, G., Giulia, N. B., Henriksen, S. J., Boger, D. L., et al. (1995) Chemical characterization of a family of brain lipids that induce sleep. Science 268, 1506–1509.CrossRefGoogle Scholar
  28. 28.
    De Zoete, M. C., Kock-van Dalen, A. C., Van Rantwijk, F., and Sheldon, R. A. (1996) Lipase-catalyzed ammoniolysis of lipids. A facile synthesis of fatty acid amides. J. Mol. Catal. B. Enzym. 1, 109–113.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Adrie J. J. Straathof
    • 1
  • Mike J. J. Litjens
    • 1
  • Joseph J. Heijnen
    • 1
  1. 1.Kluyver Laboratory for BiotechnologyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations