Skip to main content

Isolated Resistance Artery Preparation

  • Protocol
Angiotensin Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 51))

  • 609 Accesses

Abstract

The blood vessels that contribute most to precapillary resistance are known as resistance arteries, consisting of arterioles and small arteries with diameters of less than 500 μm (1). These vessels regulate the vascular resistance, and thus the blood supply, through the adjustment of their lumen diameter, which is accomplished by modulation of the level of tone in the vascular smooth muscle cells. The smooth muscle and endothelial cells in the blood vessel wall are sensitive to a great diversity of stimuli including distending pressure, shear stress, neurohumoral factors, and metabolites. All of these different signals are sensed, integrated, and eventually lead to a response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mulvany, M. J. and Aalkjær, C. (1990) Structure and function of small arteries. Physiol. Rev. 70, 921–961.

    CAS  PubMed  Google Scholar 

  2. Bevan, J. A. and Osher, J. V. (1972) A direct method for recording tension changes in the wall of small blood vessels in vitro. Agents Actions 2, 257–260.

    Article  CAS  PubMed  Google Scholar 

  3. Duling, B. R., Gore, R. W., Dacey, R. G.,Jr., and Damon, D. N. (1981) Methods for isolation, cannulation, and in vitro study of single microvessels. Am. J. Physiol. 241, H108–H116.

    CAS  PubMed  Google Scholar 

  4. Halpern, W., Osol, G., and Coy, G. S. (1984) Mechanical behavior of pressurized in vitro prearteriolar vessels determined with a video system. Ann. Biomed. Eng. 12, 463–479.

    Article  CAS  PubMed  Google Scholar 

  5. Osol, G. and Halpern, W. (1985) Myogenic properties of cerebral blood vessels from normotensive and hypertensive rats. Am. J. Physiol. 249, H914–H921.

    CAS  PubMed  Google Scholar 

  6. Zou, H., Ratz, P. H., and Hill, M. A. (1995) Role of myosin phosphorylation and [Ca2+]i in myogenic reactivity and arteriolar tone. Am. J. Physiol. 269, H1590–H1596.

    CAS  PubMed  Google Scholar 

  7. Gokina, N. I. and Osol, G. (1998) Temperature and protein kinase C modulate myofilament Ca2+sensitivity in pressurized rat cerebral arteries. Am. J. Physiol. 274, H1920–H1927.

    CAS  PubMed  Google Scholar 

  8. Ishizaka, H., Gudi, S. R., Frangos, J. A., and Kuo, L. (1999) Coronary arteriolar dilation to acidosis. Role of ATP-sensitive potassium channels and pertussis toxin-sensitive G proteins. Circulation 99, 558–563.

    CAS  PubMed  Google Scholar 

  9. Wesselman, J. P. M., VanBavel, E., Pfaffendorf, M., and Spaan, J. A. E. (1996) Voltage-operated calcium channels are essential for the myogenic responsiveness of cannulated rat mesenteric small arteries. J. Vasc. Res. 33, 32–41.

    Article  CAS  PubMed  Google Scholar 

  10. VanBavel, E., Wesselman, J. P. M., and Spaan, J. A. E. (1998) Myogenic activation and calcium sensitivity of cannulated rat mesenteric small arteries. Circ. Res. 82, 210–220.

    CAS  PubMed  Google Scholar 

  11. Sun, D., Messina, E. J., Kaley, G., and Koller, A. (1992) Characteristics and origin of myogenic response in isolated mesenteric arterioles. Am. J. Physiol. 263, H1486–H1491.

    CAS  PubMed  Google Scholar 

  12. Sun, D., Kaley, G., and Koller, A. (1994) Characteristics and origin of myogenic response in isolated gracilis muscle arterioles. Am. J. Physiol. 266, H1177–H1183.

    CAS  PubMed  Google Scholar 

  13. Miriel, V. A., Allen, S. P., Wade, S. S., and Prewitt, R. L. (1999) Genistein inhibits pressure-induced expression of c-fos in isolated mesenteric arteries. Hypertension 34, 132–137.

    CAS  PubMed  Google Scholar 

  14. Dunn, W. R., Wallis, S. J., and Gardiner, S. M. (1998) Remodeling and enhanced myogenic tone in cerebral resistance arteries isolated from genetically hypertensive Brattleboro rats. J. Vasc. Res. 35, 18–26.

    Article  CAS  PubMed  Google Scholar 

  15. Yip, K. P. and Marsh, D. J. (1996) [Ca2+]i in rat afferent arteriole during constriction measured with confocal fluorescence microscopy. Am. J. Physiol. 271, F1004–F1011.

    CAS  PubMed  Google Scholar 

  16. Ting, K. N., Dunn, W. R., Davies, D. J., Sugden, D., Delagrange, P., Guardiola-Lema...tre, B., et al. (1997) Studies on the vasoconstrictor action of melatonin and putative melatonin receptor ligands in the tail artery of juvenile Wistar rats. Br. J. Pharmacol. 122, 1299–1306.

    Article  CAS  PubMed  Google Scholar 

  17. Osol, G. and Cipolla, M. (1993) Interaction of myogenic and adrenergic mechanisms in isolated, pressurized uterine radial arteries from late-pregnant and non-pregnant rats. Am. J. Obstet. Gynecol. 168, 697–705.

    CAS  PubMed  Google Scholar 

  18. Park, K. W., Dai, H. B., Lowenstein, E., and Selke, F. W. (1996) Steady-state myogenic response of rat coronary microvessels is preserved by isoflurane but not by halothane. Anesth. Analg. 82, 969–974.

    Article  CAS  PubMed  Google Scholar 

  19. Dunn, W. R., Wellman, G. C., and Bevan, J. A. (1994) Enhanced resistance artery sensitivity to agonists under isobaric compared with isometric conditions. Am. J. Physiol. 266, H147–H155.

    CAS  PubMed  Google Scholar 

  20. Muller, J. M., Davis, M. J., Kuo, L., and Chilian, W. M. (1999) Changes in coronary endothelial cell Ca2+concentration during shear stress-and agonist-induced vasodilation. Am. J. Physiol. 276, H1706–H1714.

    CAS  PubMed  Google Scholar 

  21. Knot, H. J. and Nelson, M. T. (1995) Regulation of membrane potential and diameter by voltage-dependent K+channels in rabbit myogenic cerebral arteries. Am. J. Physiol. 269, H348–H355.

    CAS  PubMed  Google Scholar 

  22. Garcia-Roldan, J. and Bevan, J. A. (1990) Flow-induced constriction and dilation of cerebral resistance arteries. Circ. Res. 66, 1445–1448.

    CAS  PubMed  Google Scholar 

  23. Harder, D. R. (1984) Pressure-dependent membrane depolarization in cat middle cerebral artery. Circ. Res. 55, 197–202.

    CAS  PubMed  Google Scholar 

  24. Harder, D. R., Gilbert, R., and Lombard, J. H. (1987) Vascular muscle cell depolarization and activation in renal arteries on elevation of transmural pressure. Am. J. Physiol. 253, F778–F781.

    CAS  PubMed  Google Scholar 

  25. Smeda, J. S. and Daniel, E. E. (1988) Elevations in arterial pressure induce the formation of spontaneous action potentials and alter neurotransmission in canine ileum arteries. Circ. Res. 62, 1104–1110.

    CAS  PubMed  Google Scholar 

  26. Kuo, L., Davis, M. J., and Chilian, W. M. (1990) Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am. J. Physiol. 259, H1063–H1070.

    CAS  PubMed  Google Scholar 

  27. Liu, Q., Wiener, C. M., and Flavahan, N. A. (1998) Superoxide and endothelium-dependent constriction to flow in porcine small pulmonary arteries. Br. J. Pharmacol. 124, 331–336.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, S. Y., Stamler, A., Li, J., Johnson, R. G., and Selke, F. W. (1997) Decreased myogenic reactivity in skeletal muscle arterioles after hypothermic cardiopulmo-nary bypass. J. Surg. Res. 69, 40–44.

    Article  CAS  PubMed  Google Scholar 

  29. Falloon, B. J. and Heagerty, A. M. (1994) In vitro perfusion studies of human resistance artery function in essential hypertension. Hypertension 24, 16–23.

    CAS  PubMed  Google Scholar 

  30. Intengan, H. D., Deng, L. Y., Li, J. S., and Schiffrin, E. L. (1999) Mechanics and composition of human subcutaneous resistance arteries in essential hypertension. Hypertension 33, 569–574.

    CAS  PubMed  Google Scholar 

  31. Wallis, S. J., Firth, J., and Dunn, W. R. (1996) Pressure-induced myogenic responses in human isolated cerebral resistance arteries. Stroke 27, 2287–2291.

    CAS  PubMed  Google Scholar 

  32. Miller, F. J., Jr., Dellsperger, K. C., and Gutterman, D. D. (1997) Myogenic constriction of human coronary arterioles. Am. J. Physiol. 273, H257–H264.

    CAS  PubMed  Google Scholar 

  33. Learmont, J. G. and Poston, L. (1996) Nitric oxide is involved in flow-induced dilation of isolated human small fetoplacental arteries. Am. J. Obstet. Gynecol. 174, 583–588.

    Article  CAS  PubMed  Google Scholar 

  34. Bevan, R. D., Vijayakumaran, E., Gentry, A., Wellman, T., and Bevan, J. A. (1998) Intrinsic tone of cerebral artery segments of human infants between 23 weeks of gestation and term. Pediatr. Res. 43, 20–27.

    Article  CAS  PubMed  Google Scholar 

  35. McGuffee, L. J. and Little, S. A. (1996) Tunica media remodeling in mesenteric arteries of hypertensive rats. Anat. Rec. 246, 279–292.

    Article  CAS  PubMed  Google Scholar 

  36. Fenger-Gron, J., Mulvany, M. J., and Christensen, K. L. (1995) Mesenteric blood pressure profile of conscious, freely moving rats. J. Physiol. 488, 753–760.

    CAS  PubMed  Google Scholar 

  37. Allen, S. P., Liang, H. M., Hill, M. A., and Prewitt, R. L. (1996) Elevated pressure stimulates protooncogene expression in isolated mesenteric arteries. Am. J. Physiol. 271, H1517–H1523.

    CAS  PubMed  Google Scholar 

  38. Watanabe, J., Keitoku, M., Hangai, K., Karibe, A., and Takishima, T. (1993) a-Adrenergic augmentation of myogenic response in rat arterioles: role of protein kinase C. Am. J. Physiol. 264, H547–H552.

    CAS  PubMed  Google Scholar 

  39. Laurant, P., Touyz, R., and Schiffrin, E. L. (1997) Effect of pressurization on mechanical properties of mesenteric small arteries from spontaneously hypertensive rats. J. Vasc. Res. 34, 117–125.

    Article  CAS  PubMed  Google Scholar 

  40. Pourageaud, F. and De Mey, J. G. (1997) Structural properties of rat mesenteric small arteries after 4-wk exposure to elevated or reduced blood flow. Am. J. Physiol. 273, H1699–H1706.

    CAS  PubMed  Google Scholar 

  41. Karibe, A., Watanabe, J., Horiguchi, S., Takeuchi, M., Suzuki, S., Funakoshi, M., Katoh, H., et al. (1997) Role of cytosolic Ca2+and protein kinase C in developing myogenic contraction in isolated rat small arteries. Am. J. Physiol. 272, H1165–H1172.

    CAS  PubMed  Google Scholar 

  42. Falcone, J. C., Kuo, L., and Meininger, G. A. (1993) Endothelial cell calcium increases during flow-induced dilation in isolated arterioles. Am. J. Physiol. 264, H653–H659.

    CAS  PubMed  Google Scholar 

  43. D’Angelo, G., Davis, M. J., and Meininger, G.A. (1997) Calcium and mechanotransduction of the myogenic response. Am. J. Physiol. 273, H175–H182.

    CAS  Google Scholar 

  44. Schubert, R., Wesselman, J. P. M., Nilsson, H., and Mulvany, M. J. (1996) Noradrenaline-induced depolarization is smaller in isobaric compared to isometric preparations of rat mesenteric small arteries. Pflügers Arch. 431, 794–796.

    Article  CAS  PubMed  Google Scholar 

  45. Wesselman, J. P. M., Schubert, R., VanBavel, E., Nilsson, H., and Mulvany, M. J. (1997) KCa-channel blockade prevents sustained pressure-induced depolarization in rat mesenteric small arteries. Am. J. Physiol. 272, H2241–H2249.

    CAS  PubMed  Google Scholar 

  46. Peng, H., Ivarsen, A., Nilsson, H., and Aalkjær, C. (1998) On the cellular mechanism for the effect of acidosis on vascular tone. Acta Physiol. Scand. 164, 517–525.

    CAS  PubMed  Google Scholar 

  47. Hill, M. A., Davis, M. J., Song, J., and Zou, H. (1996) Calcium dependence of indolactam-mediated contractions in resistance vessels. J. Pharm. Exp. Ther. 276, 867–874.

    CAS  Google Scholar 

  48. Buus, C. L., Aalkjær, C., Nilsson, H., Juul, B., Moller, J. V., and Mulvany, M. J. (1998) Mechanisms of Ca2+sensitization of force production by noradrenaline in rat mesenteric small arteries. J. Physiol. 510, 577–590.

    Article  CAS  PubMed  Google Scholar 

  49. Allen, S. P., Wade, S. S., and Prewitt, R. L. (1997)Myogenic tone attenuates pressure-induced gene expression in isolated small arteries. Hypertension 30, 203–208.

    CAS  PubMed  Google Scholar 

  50. Wesselman, J. P. M., Wade, S. S., and Prewitt, R. L. (1999) Mechanisms of pressure-induced c-fos expression in cannulated rat small arteries. FASEB J. 13, A45, abstract.

    Google Scholar 

  51. Koller, A., Sun, D., Huang, A., and Kaley, G. (1994) Corelease of nitric oxide and prostaglandins mediates flow-dependent dilation of rat gracilis muscle arterioles. Am. J. Physiol. 267, H326–H332.

    CAS  PubMed  Google Scholar 

  52. Hill, M. A. and Ege, E. A. (1994) Active and passive mechanical properties of isolated arterioles from STZ-induced diabetic rats. Effect of aminoguanidine treatment. Diabetes 43, 1450–1456.

    Article  CAS  PubMed  Google Scholar 

  53. Koller, A. and Huang, A. (1994) Impaired nitric oxide-mediated flow-induced dilation in arterioles of spontaneously hypertensive rats. Circ. Res. 74, 416–421.

    CAS  PubMed  Google Scholar 

  54. Tribe, R. M., Thomas, C. R., and Poston, L. (1998) Flow-induced dilatation in isolated resistance arteries from control and streptozotocin-diabetic rats. Diabetologica 41, 34–39.

    Article  CAS  Google Scholar 

  55. Buus, N. H., VanBavel, E., and Mulvany, M. J. (1994) Differences in sensitivity of rat mesenteric small arteries to agonists when studied as ring preparations or as cannulated preparations. Br. J. Pharmacol. 112, 579–587.

    CAS  PubMed  Google Scholar 

  56. Bardy, N., Karillon, G. J., Merval, R., Samuel, J., and Tedgui, A. (1995) Differential effects of pressure and flow on DNA and protein synthesis and on fibronectin expression by arteries in a novel organ culture system. Circ. Res. 77, 684–694.

    CAS  PubMed  Google Scholar 

  57. Bakker, E. N. T. P., VanBavel, E., van der Meulen, E. T., and Spaan, J. A. E. (1999) Structural and functional changes of resistance arteries in organ culture. FASEB J. 13, A7, abstract.

    Google Scholar 

  58. VanBavel, E., Mooij, T., Giezeman, M. J. M. M., and Spaan, J. A. E. (1990) Cannulation and continuous cross-sectional area measurement of small blood vessels. J. Pharm. Methods 24, 219–227.

    Article  CAS  Google Scholar 

  59. Hoogerwerf, N., Zijlstra, E. J., Van der Linden, P. J. W., Westerhof, N., and Sipkema, P. (1992) Endothelium function is protected by albumin and flow-induced constriction is independent of endothelium and tone in isolated rabbit femoral artery. J. Vasc. Res. 29, 367–375.

    Article  CAS  PubMed  Google Scholar 

  60. Liu, Y., Harder, D. R., and Lombard, J. H. (1994) Myogenic activation of canine small renal arteries after nonchemical removal of the endothelium. Am. J. Physiol. 267, 302–307.

    Google Scholar 

  61. Beach, J. M., McGahren, E. D., Xia, J., and Duling, B. R. (1996) Ratiometric measurement of endothelial depolarization in arterioles with a potential-sensitive dye. Am. J. Physiol. 270, H2216–H2227.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Wesselman, J.P.M., Ratz, P.H., Prewitt, R.L. (2001). Isolated Resistance Artery Preparation. In: Wang, D.H. (eds) Angiotensin Protocols. Methods in Molecular Medicine™, vol 51. Humana Press. https://doi.org/10.1385/1-59259-087-X:471

Download citation

  • DOI: https://doi.org/10.1385/1-59259-087-X:471

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-763-2

  • Online ISBN: 978-1-59259-087-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics