Measurement of Cyclic AMP and Cyclic GMP in Xenopus Oocytes Stimulated with Angiotensin II and Atrial Natriuretic Factor

Part of the Methods in Molecular Medicine™ book series (MIMM, volume 51)


Angiotensin type-1 receptors (AT1 receptors) mediate various physiological actions of angiotensin (Ang II) via multiple-signal transduction pathways (1). In addition to the phospholipase C pathway and dihydropyridine-sensitive voltage-dependent calcium channels, AT1 receptors can couple to inhibition of adenylate cyclase via the guanine nucleotide binding protein Gi. Beside acting directly through Gi, AT1 receptors can modulate levels of cyclic AMP (cAMP) indirectly through receptor crosstalk. cAMP is a major second messenger of many G protein coupled receptors. One group of receptors (e.g., (3-adreno-receptors, A2 adenosine, D1 dopamine, H2 histamine, and some prostanoid receptors) elevate cAMP by activating adenylate cyclase through Gs, whereas a second group (a2 adrenoreceptors, A1 adenosine, D2 dopamine, 5HT1 metabotropic glutamate, and i opioid receptors) reduce cAMP levels by inhibiting adenylate cyclase via Gi. Accumulating evidence indicates that signaling crosstalk can occur between AT receptors and receptors for atrial natriuretic factor (ANF) (2), bradykinin (3), catecholamines (4), adrenocorticotropin releasing hormone (5), vasopressin (6), and dopamine (7). Ang II is also found to indirectly modulate cyclic GMP (cGMP) levels via nitric oxide (8,9).


Adenylate Cyclase Xenopus Oocyte Cyclic Nucleotide Atrial Natriuretic Factor Xenopus Laevis Oocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ohnishi, J., Ishido, M., Shibata, T., Inagami, T., Murakami, K., and Miyazaki, H. (1992) The rat angiotensin II AT1A receptor couples with three different signal transduction pathways. Biochem. Biophys. Res. Commun. 186, 1094–1101.CrossRefPubMedGoogle Scholar
  2. 2.
    Palaparti, A. and Anand-Srivastava, M. B. (1998) Angiotensin II modulates ANP-R2/ANP-C receptor-mediated inhibition of adenylyl cyclase in vascular smooth muscle cells: role of protein kinase C. J. Mol. Cell. Cardiol. 30, 1471–1482.CrossRefPubMedGoogle Scholar
  3. 3.
    Siragy, H. M. and Carey, R. M. (1999) Protective role of the angiotensin AT2 receptor in a renal wrap hypertension model. Hypertension 33, 1237–1242.PubMedGoogle Scholar
  4. 4.
    Inoue, T., Mi, Z., Gillespie, D. G., Dubey, R. K., and Jackson, E. K. (1999) Angiotensin receptor subtype 1 mediates angiotensin II enhancement of isoprot-erenol-induced cyclic AMP production in preglomerular microvascular smooth muscle cells. J. Pharmacol. Exp. Ther. 288, 1229–1234.PubMedGoogle Scholar
  5. 5.
    Richard, D. E., Laporte, S. A., Bernier, S. G., Leduc, R., and Guillemette, G. (1997) Desensitization of AT1 receptor-mediated cellular responses requires long term receptor down-regulation in bovine adrenal glomerulosa cells. Endocrinology 138, 3828–3835.CrossRefPubMedGoogle Scholar
  6. 6.
    Klingler, C., Ancellin, N., Barrault, M. B., Morel, A., Buhler, J. M., Elalouf, J. M., et al. (1998) Angiotensin II potentiates vasopressin-dependent cAMP accumulation in CHO transfected cells. Mechanisms of cross-talk between AT1A and V2 receptors. Cell. Signal. 10, 65–74.CrossRefGoogle Scholar
  7. 7.
    Hussain, T., Abdul-Wahab, R., Kotak, D. K., and Lokhandwala, M. F. (1998) Bromocriptine regulates angiotensin II response on sodium pump in proximal tubules. Hypertension 32, 1054–1059.PubMedGoogle Scholar
  8. 8.
    Pollman, M. J., Yamada, T., Horiuchi, M., and Gibbons, G. H. (1996) Vasoactive substances regulate vascular smooth muscle cell apoptosis. Countervailing influences of nitric oxide and angiotensin II. Circ. Res. 79, 748–756.PubMedGoogle Scholar
  9. 9.
    Matsubara, H. (1998) Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ. Res. 83, 1182–1191.PubMedGoogle Scholar
  10. 10.
    Hopwood, N. D. and Gurdon, J. B. (1990) Activation of muscle genes without myogenesis by ectopic expression of MyoD in frog embryo cells. Nature 347, 197–200.CrossRefPubMedGoogle Scholar
  11. 11.
    Seidman, S., Aziz-Aloya, R. B., Timberg, R., Loewenstein, Y., Velan, B., Shafferman, A., et al. (1994) Overexpressed monomeric human acetylcholinest-erase induces subtle ultrastructural modifications in developing neuromuscular junctions of Xenopus laevis embryos. J. Neurochem. 62, 1670–1681.CrossRefPubMedGoogle Scholar
  12. 12.
    Sandberg, K., Bor, M., Ji, H., Markwick, A. J., Millan, M. A., and Catt, K. J. (1990) Angiotensin II-induced calcium mobilization in oocytes by signal transfer through gap junctions. Science 249, 298–301.CrossRefPubMedGoogle Scholar
  13. 13.
    Ji, H., Sandberg, K., and Catt, K. J. (1991) Novel angiotensin II antagonists distinguish amphibian from mammalian angiotensin II receptors expressed in Xenopus laevis oocytes. Mol. Pharmacol. 39, 120–123.PubMedGoogle Scholar
  14. 14.
    Ji, H., Sandberg, K., Bonner, T. I., Catt, K. J. (1993) Differential activation of inositol 1,4,5-trisphosphate-sensitive calcium pools by muscarinic receptors in Xenopus laevis oocytes. Cell Calcium 14, 663–676.CrossRefGoogle Scholar
  15. 15.
    Sandberg, K., Markwick, A. J., Trinh, D. P., and Catt, K. J. (1988) Calcium mobilization by angiotensin II and neurotransmitter receptors expressed in Xenopus laevis oocytes. FEBS Lett. 241, 177–180.CrossRefPubMedGoogle Scholar
  16. 16.
    Sandberg, K., Ji, H., Clark, A. J., Shapira, H., and Catt, K. (1992) Cloning and expression of a novel rat angiotensin II receptor subtype. J. Biol. Chem. 267, 9455–9458.PubMedGoogle Scholar
  17. 17.
    Sandberg, K., Bor, M., Ji, H., Carvallo, P. M., and Catt, K. J. (1993) Atrial natri-uretic factor activates cyclic adenosine 3’,5’-monophosphate phosphodiesterase in Xenopus laevis oocytes and potentiates progesterone-induced maturation via cyclic guanosine 5’-monophosphate accumulation. Biol. Reprod. 49, 1074–1082.CrossRefPubMedGoogle Scholar
  18. 18.
    Seidman, S. and Soreq, H. (1997) Transgenic Xenopus. Humana, Totowa, NJ, p. 28.Google Scholar
  19. 19.
    Cheng, H. S., So, S. C., Law, S. H., and Chan, H. C. (1999) Angiotensin II-medi-ated signal transduction events in cystic fibrosis pancreatic duct cells. Biochim. Biophys. Acta 1449, 254–260.CrossRefPubMedGoogle Scholar
  20. 20.
    Dumont, J. N. (1972) Oogenesis in Xenopus laevis (Daudin). I stages of oocytes development in laboratory maintained animals. J. Morphol. 136, 153–180.CrossRefPubMedGoogle Scholar
  21. 21.
    Miller, J. L. (1983) Use of microinjection techniques to study protein kinase and protein phosphorylation in amphibian oocytes. Methods Enzymol. 99, 219–226.CrossRefGoogle Scholar
  22. 22.
    Horton, J. K. and Baxendale, P. M. (1995) Mass measurements of cyclic AMP formation by radioimmunoassay, enzyme immunoassay, and scintillation proximity assay. Methods Mol. Biol. 41, 91–105.PubMedGoogle Scholar
  23. 23.
    Patel, A. and Linden, J. (1988) Purification of 125I-labeled succinyl cyclic nucle-otide tyrosine methyl esters by high-performance liquid chromatography. Anal. Biochem. 168, 417–420.CrossRefPubMedGoogle Scholar
  24. 24.
    Wu, M. and Gerhart, J. (1991) Raising Xenopus in the laboratory. Methods Cell Biol. 36, 3–18.CrossRefPubMedGoogle Scholar
  25. 25.
    Dascal, N. (1987) The use of Xenopus oocytes for the study of ion channels. CRC Crit. Rev. Biochem. 22, 317–387.CrossRefPubMedGoogle Scholar
  26. 26.
    Smith, L. D., Xu, W. L., and Varnold, R. L. (1991) Oogenesis and oocyte isolation. Methods Cell Biol. 36, 45–60.CrossRefPubMedGoogle Scholar
  27. 27.
    Steiner, A. L., Parker, C. W., and Pipnis, D. M. (1972) Radioimmunoasay for cyclic nucleotides. J. Biol. Chem. 247, 1106–1113.PubMedGoogle Scholar
  28. 28.
    Harper, J. F. and Brooker, G. (1975) Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2’0 acetylation by acetic anhydride in aqueous solution.J. Cyclic NucleotideRes. 1, 207–218.Google Scholar
  29. 29.
    Daniels, C. K., Zhang, L., Musser, B., and Vestal, R. E. (1994) A solid-phase radioimmunoassay for cyclic AMP. J. Pharmacol. Toxicol. Methods 31, 41–46.CrossRefPubMedGoogle Scholar
  30. 30.
    Berg, W. and Hornbeck, P. V. (1993) A micro-radioimmunoassay for the measurement of intracellular cAMP. Biotechniques 15, 56–59.PubMedGoogle Scholar
  31. 31.
    Bauer, P. H., Chiu, A. T., and Garrison, J. C. (1991) DuP 753 can antagonize the effects of angiotensin II in rat liver. Mol. Pharmacol. 39, 579–585.PubMedGoogle Scholar
  32. 32.
    Woodcock, E. A. and Johnston, C. I. (1984) Inhibition of adenylate cyclase in rat adrenal glomerulosa cells by angiotensin II. Endocrinology 115, 337–341.CrossRefPubMedGoogle Scholar
  33. 33.
    Marie, J. and Jard, S. (1983) Angiotensin II inhibits adenylate cyclase from adrenal cortex glomerulosa zone. FEBS Lett. 159, 97–101.CrossRefPubMedGoogle Scholar
  34. 34.
    Everett, A. D., Heller, F., and Fisher, A. (1996) AT1 receptor gene regulation in cardiac myocytes and fibroblasts. J. Mol. Cell. Cardiol. 28, 1727–1736.CrossRefPubMedGoogle Scholar
  35. 35.
    Ganguly, A., Chiou, S., West, L. A., and Davis, J. S. (1989) Atrial natriuretic factor inhibits angiotensin-induced aldosterone secretion: not through cGMP or interference with phospholipase C. Biochem. Biophys. Res. Commun. 159, 148–154.CrossRefGoogle Scholar
  36. 36.
    Thekkumkara, T. J., Thomas, W. G., Motel, T. J., and Baker, K. M. (1998) Functional role for the angiotensin II receptor (AT1A) 3’-untranslated region in determining cellular responses to agonist: evidence for recognition by RNA binding proteins. Biochem. J. 329, 255–264.PubMedGoogle Scholar
  37. 37.
    Conchon, S., Barrault, M. B., Miserey, S., Corvol, P., and Clauser, E. (1997) The C-terminal third intracellular loop of the rat AT1A angiotensin receptor plays a key role in G protein coupling specificity and transduction of the mitogenic signal. J. Biol. Chem. 272, 25,566–25,572.CrossRefPubMedGoogle Scholar
  38. 38.
    Wang, X., Nickenig, G., and Murphy, T. J. (1997) The vascular smooth muscle type I angiotensin II receptor mRNA is destabilized by cyclic AMP-elevating agents. Mol. Pharmacol. 52, 781–787.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Hong Ji
    • 1
  1. 1.Department of Physiology and BiophysicsGeorgetown University Medical CenterWashington

Personalised recommendations