Skip to main content

Selection of Cytochrome P450 Genes for Use in Prodrug Activation-Based Cancer Gene Therapy

  • Protocol
Gene Therapy of Cancer

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 35))

  • 603 Accesses

Abstract

Prodrug activation-based cancer gene therapy is a molecular strategy to improve the efficacy of cancer chemotherapy by conferring upon tumor cells the capability to metabolize specific anticancer prodrugs into lethal intracellular toxins. The overall goal of this strategy is to increase the generation of cytotoxic drug metabolites locally, at their site of action within the tumor. This therapy can provide for an increase in drug efficacy and potentially also a reduction in host toxicity, which may be achieved by a lowering of the therapeutically effective drug dosage, thereby reducing the need to expose host tissues to high cytotoxic plasma drug concentrations. This chapter describes the cytochrome P450-based prodrug activation strategy for cancer gene therapy , with a particular emphasis on the selection of suitable P450 gene/prodrug combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wei, M. X., Tamiya, T., Chase, M., Boviatsis, E. J., Chang, T. K. H., Kowall, N. W., et al. (1994) Experimental tumor therapy in mice using the cyclophosphamideactivating cytochrome P450 2B1 gene. Hum. Gene Ther. 5, 969ā€“978.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Chen, L. and Waxman, D. J. (1995) Intratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy. Cancer Res. 55, 581ā€“589.

    PubMedĀ  CASĀ  Google ScholarĀ 

  3. Waxman, D. J., Chen, L., Hecht, J. E. D., and Jounaidi, Y. (1998) Cytochrome P450-based cancer gene therapy: recent advances and future prospects. Drug Metab. Rev. 31, 503ā€“522.

    ArticleĀ  Google ScholarĀ 

  4. Moolten, F. L. (1994) Drug sensitivity (&quote;suicide&quote;) genes for selective cancer chemotherapy. Cancer Gene Ther. 1, 279ā€“287.

    PubMedĀ  CASĀ  Google ScholarĀ 

  5. Freeman, S. M., Whartenby, K. A., Freeman, J. L., Abboud, C. N., and Marrogi, A. J. (1996) In situ use of suicide genes for cancer therapy. Semin. Oncol. 23, 31ā€“45.

    PubMedĀ  CASĀ  Google ScholarĀ 

  6. Roth, J. A. and Cristiano, R. J. (1997) Gene therapy for cancer: what have we done and where are we going? J. Natl. Cancer Inst. 89, 21ā€“39.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Pope, I. M., Poston, G. J., and Kinsella, A. R. (1997) The role of the bystander effect in suicide gene therapy. Eur. J. Cancer 33, 1005ā€“1016.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. LeBlanc, G. A. and Waxman, D. J. (1989) Interaction of anticancer drugs with hepatic monooxygenase enzymes. Drug Metab. Rev. 20, 395ā€“439.

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Kivisto, K. T., Kroemer, H. K., and Eichelbaum, M. (1995) The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: implications for drug interactions. Br. J. Clin. Pharmacol. 40, 523ā€“530.

    PubMedĀ  CASĀ  Google ScholarĀ 

  10. Smith, G., Harrison, D. J., East, N., Rae, F., Wolf, H., and Wolf, C. R. (1993) Regulation of cytochrome P450 gene expression in human colon and breast tumour xenografts. Br. J. Cancer 68, 57ā€“63.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Huang, Z., Fasco, M. J., Figge, H. L., Keyomarsi, K., and Kaminsky, L. S. (1996) Expression of cytochromes P450 in human breast tissue and tumors. Drug Metab. Dispos. 24, 899ā€“905.

    PubMedĀ  CASĀ  Google ScholarĀ 

  12. Chang, T. K. H., Weber, G. F., Crespi, C. L., and Waxman, D. J. (1993) Differential activation of cyclophosphamide and ifosphamide by cytochromes P450 2B and 3A in human liver microsomes. Cancer Res. 53, 5629ā€“5637.

    PubMedĀ  CASĀ  Google ScholarĀ 

  13. Walker, D., Flinois, J. P., Monkman, S. C., Beloc, C., Boddy, A. V., Cholerton, S., et al. (1994) Identification of the major human hepatic cytochrome P450 involved in activation and N-dechloroethylation of ifosfamide. Biochem. Pharmacol. 47, 1157ā€“1163.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Dehal, S. S. and Kupfer, D. (1997) CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res. 57, 3402ā€“3406.

    PubMedĀ  CASĀ  Google ScholarĀ 

  15. Rainov, N. G., Dobberstein, K. U., Sena-Esteves, M., Herrlinger, U., Kramm, C. M., Philpot, R. M., et al. (1998) New prodrug activation gene therapy for cancer using cytochrome P450 4B1 and 2-Aminoanthracene/4-Ipomeanol. Human Gene Ther. 9, 1261ā€“1273.

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Chen, L., Yu, L. J., and Waxman, D. J. (1997) Potentiation of cytochrome P450/ cyclophosphamide-based cancer gene therapy by coexpression of the P450 reductase gene. Cancer Res. 57, 4830ā€“4837.

    PubMedĀ  CASĀ  Google ScholarĀ 

  17. Chase, M., Chung, R. Y., and Chiocca, E. A. (1998) An oncolytic viral mutant that delivers the CYP2B1 transgene and augments cyclophosphamide chemotherapy. Nature Biotech. 16, 444ā€“448.

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Chen, L., Waxman, D. J., Chen, D., and Kufe, D. W. (1996) Sensitization of human breast cancer cells to cyclophosphamide and ifosfamide by transfer of a liver cytochrome P450 gene. Cancer Res. 56, 1331ā€“1340.

    PubMedĀ  CASĀ  Google ScholarĀ 

  19. Jounaidi, Y., Hecht, J. E. D., and Waxman, D. J. (1998) Retroviral transfer of cytochrome P450 genes for oxazaphosphorine-based cancer gene therapy. Cancer Res. 58, 4391ā€“4401.

    PubMedĀ  CASĀ  Google ScholarĀ 

  20. Clarke, L. and Waxman, D. J. (1989) Oxidative metabolism of cyclophosphamide: identification of the hepatic monooxygenase catalysts of drug activation. Cancer Res. 49, 2344ā€“2350.

    PubMedĀ  CASĀ  Google ScholarĀ 

  21. Chang, T. K., Yu, L., Goldstein, J. A., and Waxman, D. J. (1997) Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation. Pharmacogenetics 7, 211ā€“221.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Weber, G. F. and Waxman, D. J. (1993) Activation of the anti-cancer drug ifosphamide by rat liver microsomal P450 enzymes. Biochem. Pharmacol. 45, 1685ā€“1694.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Roy, P., Yu, L. J., Crespi, C. L., and Waxman, D. J. (1999) Development of a substrate-activity based approach to identify the major human liver P450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P450 profiles. Drug Metab. Rev. 27, 655ā€“666.

    CASĀ  Google ScholarĀ 

  24. Nelson, D. R., Koymans, L., Kamataki, T., Stegeman, J. J., Feyereisen, R., Waxman, D. J., et al. (1996) Cytochrome P450 superfamily: Update on new sequences, gene mapping, accession numbers, and nomenclature. Pharmacogenetics 6, 1ā€“42.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Mesnil, M., Piccoli, C., Tiraby, G., Willecke, K., and Yamasaki, H. (1996) Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc. Natl. Acad. Sci. USA 93, 1831ā€“1835.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Gagandeep, S., Brew, R., Green, B., Christmas, S. E., Klatzmann, D., Poston, G. J., and Kinsella, A. R. (1996) Prodrug-activated gene therapy: involvement of an immunological component in the &quote;bystander effect.&quote; Cancer Gene Ther. 3, 83ā€“88.

    PubMedĀ  CASĀ  Google ScholarĀ 

  27. Aghi, M., Chou, T. C., Suling, K., Breakfield, X. O., and Chiocca, E. A. (1999) Multimodal cancer treatment mediated by a replicating oncolytic virus that delivers the oxazaphosphorine/rat cytochrome P450-2B1 and ganciclovir/herpes simplex virus thymidine kinase gene therapies. Cancer Res. 59, 3861ā€“3865.

    PubMedĀ  CASĀ  Google ScholarĀ 

  28. Dachs, G. U., Dougherty, G. J., Stratford, I. J., and Chaplin, D. J. (1997) Targeting gene therapy to cancer: a review. Oncol. Res. 9, 313ā€“325.

    PubMedĀ  CASĀ  Google ScholarĀ 

  29. Miller, N. and Whelan, J. (1997) Progress in transcriptionally targeted and regulatable vectors for genetic therapy. Hum. Gene Ther. 8, 803ā€“815.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Dachs, G. U., Patterson, A. V., Firth, J. D., Ratcliffe, P. J., Townsend, K. M., Stratford, I. J., and Harris, A. L. (1997) Targeting gene expression to hypoxic tumor cells. Nat. Med. 3, 515ā€“520.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. Brown, J. M. and Giaccia, A. J. (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 58, 1408ā€“1416.

    PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Hecht, J.E.D., Waxman, D.J. (2000). Selection of Cytochrome P450 Genes for Use in Prodrug Activation-Based Cancer Gene Therapy. In: Walther, W., Stein, U. (eds) Gene Therapy of Cancer. Methods in Molecular Medicineā„¢, vol 35. Humana Press. https://doi.org/10.1385/1-59259-086-1:77

Download citation

  • DOI: https://doi.org/10.1385/1-59259-086-1:77

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-714-4

  • Online ISBN: 978-1-59259-086-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics