Skip to main content

Retroviral Transfer of the Herpes Simplex Virus-Thymidine Kinase (HSV-tK) Gene for the Treatment of Cancer

  • Protocol
  • 606 Accesses

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 35))

Abstract

Gene therapy is defined as the alteration of the genetic material of a cell with resultant benefit to a patient. Gene transfer has two broad categories: one in which a therapeutic gene is delivered to the cells with the aim of treating a disease; and another where a marker gene is delivered to label a cell type to determine the fate of a cell or the marker gene. Gene therapy is now becoming a rapidly developing therapeutic modality for experimental treatment of some cancers and diseases that have no alternative treatment (1,2).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Anderson, W. F. (1992) Human gene therapy. Science 256, 808–813.

    Article  PubMed  CAS  Google Scholar 

  2. Friedman, T. and Roblin, R. (1972) Gene therapy for human genetic diseases. Science 175, 949–955.

    Article  Google Scholar 

  3. Blaese, R. M. (1992) Gene therapy using suicide genes, in Biologic Therapy of Cancer (DeVita Jr., V. T., Hellman, S., and Rosenberg, S. A., eds.), J. B. Lippincot, Philadelphia, PA, pp. 746–750.

    Google Scholar 

  4. Freeman, S. M., McCune, C. S., Abboud, C. N., and Abraham G. N. (1992) Treatment of ovarian cancer using HSV-tK gene-modified cells. Hum. Gene Ther. 3, 342–349.

    Google Scholar 

  5. Moolten, F. L. (1986) Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res. 46, 5276–5281.

    PubMed  CAS  Google Scholar 

  6. Elion, G. B. (1980) The chemotherapeutic exploitation of virus specified enzymes. Adv. Enzyme Regul. 18, 53–60.

    Article  PubMed  CAS  Google Scholar 

  7. Elion, G. B., Furman, P. A., Fyfe, J. A., deMiranda, P., Beauchamp, L., and Schaeffer, H. J. (1977) Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc. Natl. Acad. Sci. USA 74, 5716–5720.

    Article  PubMed  CAS  Google Scholar 

  8. Shepp, D. H., Dandliker, P., deMiranda, P., Burnette, T. C., Cederberg, D. M., Kirk, L. E., and Meyer, J. D. (1985). Activity of 9-[2-hydroxymethyl) ethoxymethyl guanine in the treatment of cytomegalovirus penumonia. Ann. Intern. Med. 103, 368–373.

    PubMed  CAS  Google Scholar 

  9. Moolten, F. L. (1990a) Mosaicism induced by gene insertion as a means of improving chemotherapeutic selectivity. Crit. Rev. Immunol. 10, 203–233.

    PubMed  CAS  Google Scholar 

  10. Moolten, F. and Wells, J. M. (1990b) Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J.Natl. Cancer Inst. 82, 297–300.

    Article  PubMed  CAS  Google Scholar 

  11. Freeman, S. M., Whartenby, K. A., Koeplin, D. S., Moolten, F. L., Abboud, C. N., and Abraham, G. N. (1992b) Tumor regression when a fraction of the tumor mass contains the HSV-tK gene. J. Cell Biochem. 16F (abstr. 47).

    Google Scholar 

  12. Freeman, S. M., Abboud, C. N., Whartenby, K. A., Packman, C. H., Koeplin, D. S., Moolten, F. L., and Abraham, G. N. (1993) The Bystander effect: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 53, 5274–5283.

    PubMed  CAS  Google Scholar 

  13. Bi, W. L., Parysek, L. M., Warnick, R., and Stambrook, P. J. (1993) In vitro evidence that metabolic cooperation is responsible for the Bystander Effect observed with HSV-tK retroviral gene therapy. Hum. Gene Ther. 4, 725–731.

    Article  PubMed  CAS  Google Scholar 

  14. Mesnil, M., Piccoli, C., Tiraby, G., Willecke, K., and Yamasaki, H. (1996) Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc. Natl. Acad. Sci. USA 93, 1831–1835.

    Article  PubMed  CAS  Google Scholar 

  15. Freeman, S. M., Ramesh, R., Shastri, M., Munshi, A., Jensen, A., and Marrogi, A. J. (1995) The role of cytokines in mediating the bystander effect usingHSV-tK xenogeneic cells.Cancer Lett. 92, 167–174.

    Article  PubMed  CAS  Google Scholar 

  16. Barba, D., Hardin, J., Ray, J., and Gage, F. H. (1993) Thymidine kinase mediated killing of rat brain tumors. J. Neurosurg. 79, 729–735.

    Article  PubMed  CAS  Google Scholar 

  17. Culver, K. W., Ram, Z., Oldfield, E. H., and Blaese, M. (1992) Regression of brain tumors using gene-modified cells. Science 256, 1550–1552.

    Article  PubMed  CAS  Google Scholar 

  18. Ram, Z., Culver, K. W., Walbridge, S. W., Blaese, R. M., and Oldfield, E. H. (1993) In situ retroviral-mediated gene transfer for the treatment of brain tumors. Cancer Res. 53, 83–88.

    PubMed  CAS  Google Scholar 

  19. Ezzedine, Z. D., Martuza, R. L., Platika, D., Short, M. P., Malick, T., Choi, B., et al. (1991) Selective killing of glioma cells in culture and in vivo by retrovirus transfer of the Herpes Simplex thymidine kinase gene. New Biol. 3, 608–614.

    CAS  Google Scholar 

  20. Freeman, S. M., McCune, C., Robinson, W., Abboud, C. N., Angel, C., Abraham G. N., et al. (1995) Treatment of ovarian cancer using a gene-modified vaccine. Hum. Gene Ther. 6, 927–939.

    Article  PubMed  CAS  Google Scholar 

  21. Freeman, S. M., Ramesh, R., Munshi, A., Abboud, C. N., and Marrogi, A. J. (1995) Enhanced tumor recognition and killing using the HSV-tK suicide gene. Cancer Gene Ther. 2, 240–241.

    Google Scholar 

  22. Ramesh, R., Marrogi, A. J., Munshi, A., Abboud, C. N., and Freeman, S. M. (1996) In-vivo analysis of the “Bystander effect”: a cytokine cascade. Exp. Hematol. 24, 829–838.

    PubMed  CAS  Google Scholar 

  23. Gagandeep, S., Brew, R., Green, B., Christmas, S. E., Klatzman, D., Poston, G. J., and Kinsella, A. R. (1996) Prodrug activated gene therapy. Involvement of an immunological component in the bystander effect. Cancer Gene Ther. 3, 83–88.

    PubMed  CAS  Google Scholar 

  24. Boring, C. C., Squires, T. S., and Tong, T. (1993) Cancer statistics, 1993. CA Cancer J. Clin. 43, 7–26.

    Article  PubMed  CAS  Google Scholar 

  25. Cornetta, K. and Anderson, W. F. (xxxx) Protamine sulfate as an effective alternative to polybrene in retroviral-mediated gene-transfer: implications for human gene therapy. J.Virol. 23, 187–194.

    Google Scholar 

  26. Aaronson, S. A., Bassin, R. H., and Weaver, C. (1972) Comparison of the murine sarcoma viruses in non-producer and S+/L−transformed cells. J.Virol. 9, 701–704.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Ramesh, R., Munshi, A., J. Marrogi, A., M. Freeman, S. (2000). Retroviral Transfer of the Herpes Simplex Virus-Thymidine Kinase (HSV-tK) Gene for the Treatment of Cancer. In: Walther, W., Stein, U. (eds) Gene Therapy of Cancer. Methods in Molecular Medicine™, vol 35. Humana Press. https://doi.org/10.1385/1-59259-086-1:479

Download citation

  • DOI: https://doi.org/10.1385/1-59259-086-1:479

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-714-4

  • Online ISBN: 978-1-59259-086-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics