Skip to main content

Ex Vivo Cytokine Gene Transfer in Melanomas by Using Particle Bombardment

  • Protocol
Gene Therapy of Cancer

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 35))

  • 601 Accesses

Abstract

Melanoma is a malignant tumor of neuroectodermal origin with an increasing incidence and mortality. It needs to be detected and eliminated early, because melanoma is characterized by its high resistance to the conventional therapies, including surgery and chemotherapy (1-3). On the other hand, melanoma is supposed to be one of the most immunogenic tumors which is demonstrated by tumor-infiltrating lymphocytes (TIL) destroying melanoma cells (4-6). This may also be responsible for the occurrence of spontaneous partial or complete melanoma regression and for concomitant destruction of melanocytes in benign lesions, leading to clinical phenomena such as halo nevi, uveitis, and vitiligo in melanoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmann, D. L., Creagan, E. T., Hahn, R. G., Edmonson, J. H., Bisel, H. F., and Schaid D. J. (1989) Complete responses and long-term survivals after systemic chemotherapy for patients with advanced malignant melanoma. Cancer 63, 224–227.

    Article  PubMed  CAS  Google Scholar 

  2. Johnson, T. M., Smith, J. W., Nelson, B. R., and Chang A. (1995) Current therapy for cutaneous melanoma. J. Am. Acad. Dermatol. 32, 689–707.

    Article  PubMed  CAS  Google Scholar 

  3. Garbe, C. (1993) Chemotherapy and chemoimmunotherapy in disseminated malignant melanoma. Melanoma Res. 3, 291–299.

    PubMed  CAS  Google Scholar 

  4. Oettgen, H. F. and Old, L. J. (1991) The history of cancer immunotherapy, in Biologic Therapy of Cancer, Principles and Practice (de Vita, V. T., Hellman, S., and Rosenberg, S. A., eds.), Lippincott, Philadelphia, PA, pp. 87–99.

    Google Scholar 

  5. Parkinson, D. R., Houghton, A. N., Hersey, P., and Borden, E. C. (1992) Biologic therapy for melanoma, in Cutaneous Melanoma (Balch, C. M., Houghton, A. N., Milton, G. W., Sober, A. J., and Soong, S. J., eds.), Lippincott, Philadelphia, PA, p. 522.

    Google Scholar 

  6. Dagleish, A. (1996) The case for therapeutic vaccines. Melanoma Res 6, 5–10.

    Article  Google Scholar 

  7. Mackensen, A., Carcelain, G., Viel, S., Raynal, M.-C., Michalaki, H., Triebel, F., et al. (1994) Direct evidence to support the immunosurveillance concept in a human regressive melanoma. J. Clin. Invest. 93, 1391–1402.

    Article  Google Scholar 

  8. Maeurer, M. J., Storkus, W. J., Kirkwood, J. M., and Lotze, M. T. (1996) New treatment options for patients with melanoma: review of melanoma-derived T-cell epitope-based peptide vaccines. Melanoma Res. 6, 11–24.

    Article  PubMed  CAS  Google Scholar 

  9. Kawakami, Y., Eliyahu, S., Delgado, C. H., Robbins, P. F., Sakaguchi, K., Appella, E., et al. (1994) Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc. Natl. Acad. Sci. USA 91, 6458–6462.

    Article  PubMed  CAS  Google Scholar 

  10. Robbins, P. F., El-Gamil, M., Kawakami, Y., and Rosenberg, S. A. (1994) Recognition of tyrosinase by tumor-infiltrating lymphocytes from a patient responding to immunotherapy. Cancer Res 54, 3124–3126.

    PubMed  CAS  Google Scholar 

  11. Möller, P. and Schadendorf, D. (1997) Somatic gene therapy and its implication for the treatment of malignant melanoma. Arch. Dermatol. Res. 289, 71–77.

    Article  Google Scholar 

  12. Schadendorf, D. (1997) Cytokines, autologous cell immunostimulatory and gene therapy for cancer treatment, in Skin Immune System 2nd ed. (Bos, J. D., ed.), CRC, Boca Raton, FL, pp. 657–669.

    Google Scholar 

  13. Rosenberg, S. A., Lotze, M. T., Muul, L. M., Leitman, S., Chang, A. E., Ettinhhausen, S. E., et al. (1985) Observation on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with cancer. N. Engl. J. Med. 313, 1485–1492.

    Article  PubMed  CAS  Google Scholar 

  14. Tepper, R. I., Pattengale, P. K., and Leder, P. (1989) Murine interleukin 4 displays potent anti-tumor activity in vivo. Cell 57, 503–512.

    Article  PubMed  CAS  Google Scholar 

  15. Fearon, E. R., Pardoll, D. M., Itaya, T., Golumbek, P., Livitsky, H. I., Simons, J. W., et al. (1990) Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 60, 397–403.

    Article  PubMed  CAS  Google Scholar 

  16. Pardoll, D. M. and Beckerleg, A. M. (1995) Exposing the immunology of naked DNA vaccines. Immunity 3, 165–169.

    Article  PubMed  CAS  Google Scholar 

  17. Cayeux, S., Beck, C., Aicher, A., Dörken, B., and Blankenstein, T. (1995) Tumor cells cotransfected with interleukin-7 and B7.1 genes induce CD25 and CD28 on tumor-infiltrating T lymphocytes and are strong vaccines. Eur. J. Immunol. 25, 2325–2331.

    Article  PubMed  CAS  Google Scholar 

  18. Marcel, T. and Grausz, J. D. (1997) The TMC worldwide gene therapy enrollment report, end 1996. Hum. Gene Ther. 8, 775–800.

    Article  PubMed  CAS  Google Scholar 

  19. Ledley, F. D. (1995) Nonviral gene therapy: the promise of genes as pharmaceutical products. Hum. Gene Ther. 6, 1129–1144.

    Article  PubMed  CAS  Google Scholar 

  20. Schadendorf, D., Czarnetzki, B. M., and Wittig, B. (1995) Clinical protocolinterleukin-7-, interleukin-12-, and GM-CSF gene transfer in patients with metastatic melanoma. J. Mol. Med. 73, 473–477.

    Article  PubMed  CAS  Google Scholar 

  21. Schadendorf, D., Henz, B. M., and Wittig, B. (1996) Interleukin 7 trials for melanoma treatment. Mol. Med. Today 2, 143–144.

    Article  Google Scholar 

  22. Möller, P., Sun, Y. S., Dorbic, T, Möller H., Makki, A., Jurgovsky, K., et al. (1998) Vaccination with IL-7-gene modified autologous melanoma cells can enhances the anti-melanoma lytic activity in peripheral blood of advanced melanoma patients-a clinical phase I study. Brit. J. Cancer, 77, 1907–1916.

    Article  Google Scholar 

  23. Sun, Y., Jurgovsky, K., Möller, P., Alijagic, S., Dorbic, T., Georgieva, J., et al. (1998) Vaccination with Il-12-gene modified autologous melanoma cellspreclinical results and a first clinical phase I study. Gene Ther. 5, 481–490.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Schadendorf, D. (2000). Ex Vivo Cytokine Gene Transfer in Melanomas by Using Particle Bombardment. In: Walther, W., Stein, U. (eds) Gene Therapy of Cancer. Methods in Molecular Medicine™, vol 35. Humana Press. https://doi.org/10.1385/1-59259-086-1:439

Download citation

  • DOI: https://doi.org/10.1385/1-59259-086-1:439

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-714-4

  • Online ISBN: 978-1-59259-086-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics