Skip to main content

Tumor-Targeted Salmonella: Strain Development and Expression of the HSV-tK Effector Gene

  • Protocol
Gene Therapy of Cancer

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 35))

Abstract

Gene therapy approaches to cancer treatment have been limited by the ability of the delivery vectors to achieve specific high-level expression within tumor cells or the tumor environment following systemic administration. Numerous physical barriers exist in the delivery of therapeutic agents (including drugs, viruses, and liposomes) to solid tumors that can compromise the effectiveness (1), thus stimulating the search for alternative methods of delivery. Whereas it has been known for some time that spores of anaerobic Clostridium can germinate within the necrotic spaces of human tumors, they are limited to larger hypoxic tumors and are inaccessible to smaller metastases (2,3). The ability of motile, facultatively anaerobic Salmonella to target tumors following systemic administration, preferentially amplify within them, and express effector genes such as the herpes simplex virus thymidine kinase (HSV-TK) makes them an attractive alternative to Clostridia, liposome and viral-based delivery vectors (4). These Salmonella were attenuated by poly-auxotrophic mutations, which limited their pathogenesis in normal tissues, but retained high-level replication within tumors, resulting in tumor suppression of both primary and metastatic tumors (4,5). The attenuating mutations were added stepwise following in vitro and in vivo selection and screening methods. Although live-attenuated vectors for use in humans requires defined genetic mutations, our experience has shown that combinations of point-mutations and frame-shift mutations allows for rapid isolation of strains with multiple mutations having desirable properties, which can later be defined and/ or stabilized. Bearing this in mind, we present the basic methodology for the development of tumor-targeting facultative anaerobes with effector gene delivery capabilities that we applied to Salmonella.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain, R. K. (1994) Barriers to drug delivery in solid tumors. Scient. Am. 271 (July), 58ā€“65.

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Parker, R. C., Plummber, H. C., Siebenmann, C. O., and Chapman, M. G. (1947) Effect of histolyticus infection and toxin on transplantable mouse tumors. Proc. Soc. Exp. Biol. Med. 66, 461ā€“465.

    PubMedĀ  CASĀ  Google ScholarĀ 

  3. Fox, M. E., Lemmon, M. J., Mauchline, M. L., Davis, T. O., Giaccia, A. J., Minton, N. P., and Brown, J. M. (1996) Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered clostridia. Gene Ther. 3, 173ā€“178.

    PubMedĀ  CASĀ  Google ScholarĀ 

  4. Pawelek, J. M., Low, K. B., and Bermudes, D. (1997) Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 57, 4537ā€“4544.

    PubMedĀ  CASĀ  Google ScholarĀ 

  5. Zheng, L. M., Luo, X., Fischer, J., Le, T., Bermudes, D., Low, B., et al. (1997) Attenuated Salmonella typhimurium inhibited tumor metastasis in vivo. Proc. Amer. Asoc. Cancer Res. (abstrt.) 38, 9.

    Google ScholarĀ 

  6. Bacon, G. A., Burrows, T. W., and Yates, M. (1950) The effects of biochemical mutation on the virulence of bacterium typhosum: the induction and isolation of mutants. Br. J. Exp. Path. 31, 703ā€“713.

    CASĀ  Google ScholarĀ 

  7. Bacon, G. A., Burrows T. W., and Yates, M. (1951) The effects of biochemical mutation on the birulence of bacterium typhosum: the loss of virulence of certain mutants. Br. J. Exp. Path. 32, 85ā€“96.

    CASĀ  Google ScholarĀ 

  8. Hoiseth, S. K. J. and Stocker, B. A. D. (1981) Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291, 238ā€“239.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Oā€™Callaghan, D., Maskell, D., Liew, F. Y., Easmon, C. S. F., and Dougan, G. (1988) Characterization of aromatic-and purine-dependent Salmonella typhimurium: attenuation, persistence, and ability induce protective immunity in BALB/c mice. Infect. Immun. 56, 419ā€“423.

    CASĀ  Google ScholarĀ 

  10. Pidherney, M. S., Alizadeh, H., Steward, G. L., McCulley, J. P., and Niederkorn, J. Y. (1993) In vitro and in vivo tumorcidal properties of a pathogenic/free-living amoeba. Cancer Lett. 72, 91ā€“98.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Alizadeh, H., Pidherney, M. S., McCulley, J. P., and Niederkorn, J. Y. (1994) Apoptosis as a mechanism of cytolysis of tumor cells by a pathogenic free-living amoeba. Infect. Immun. 62, 1298ā€“1303.

    PubMedĀ  CASĀ  Google ScholarĀ 

  12. Miller, J. H. (1992) A Short Course in Bacterial Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor.

    Google ScholarĀ 

  13. Hutchinson, F. (1996) Mutagenesis, in Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology (Neidhardt, F. C., Curtiss III, R., Ingraham, J. L., Lin, E. C. C., Low, K. B., Magasanik, B., et al., eds.), Am. Soc. Microbiol., Washington, DC, pp. 2218ā€“2235.

    Google ScholarĀ 

  14. Cunningham, C. C., Gorlin, J. B., Kwiatkowski, D. J., Hartwig, H. J., Janmey, P. A., Byers, H. R., and Stossel, T. P. (1992) Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255, 325ā€“327.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Vile, R. G. and Hart, I. R. (1993) Use of tissue-specific expression of the herpes simples virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA. Cancer Res. 53, 3860ā€“3864.

    PubMedĀ  CASĀ  Google ScholarĀ 

  16. Moolten, F. L. and Wells, J. M. (1990) Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J. Natl. Cancer Inst. 82, 297ā€“300.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Talmadge, K,. Stahl, S., and Gilbert, W. (1980) Eukaryotic signal sequence transports insulin antigen in Escherchia coli. Proc. Natl. Acad. Set USA 77, 3369ā€“3373.

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Pugsley, A. P. (1988) Protein secretion across the outer membrane of gram-negative bacteria, in Protein Transfer and Organelle Biogenesis (Das, R. C. and Robbins, P. W., eds.), Academic, New York, pp. 607ā€“652.

    Google ScholarĀ 

  19. Holland, I. B., Wang, R., Seror, S. J., and Blight, M. (1989) Haemolysin secretion and other protein translocation mechanisms in gram-negative bacteria, in Microbial Products, New Approaches (Baumberg, S., Hinster, I., and Rhodes, M., eds.), Cambridge University Press, Cambridge, pp. 219ā€“254.

    Google ScholarĀ 

  20. Wagner, W., Vogel, M. l., and Goebel, W. (1983) Transport of haemolysin across the outermembrane of Escherichia coli requires two functions. J. Bacteriol. 154, 200ā€“210.

    PubMedĀ  CASĀ  Google ScholarĀ 

  21. Su, G-F., Brahmbhatt, H. N., deLorenzo, V., Wehland, J., and Timmis, K. N. (1992) Extracellular export of shiga toxin B-subunit/haemolysin A (C-terminus) fusion protein expressed in Salmonella typhimurium aroA-mutant and stimulation of B-subunit specific antibody responses in mice. Microbial. Pathogenesis 13, 465ā€“476.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Jones, J. D. G., Grady, K. L., Suslow, T. V., and Bedbrook, J. R. (1986) Isolation and characterization of genes encoding two chitinase enzymes from Serratia marcescens. EMBO J. 5, 2377ā€“2383.

    Google ScholarĀ 

  23. Goebel, W., Hacker, J., Knapp, S., Then, J., Wagner, W., Hughes, C., and Juarez, A. (1984) Structure, function and regulation of the plasmid-encoded hemolysin determinant of E. coli, in Plasmids in Bacteria (Helinski, D. R., Cohen, S. N., Cloewell, D. B., Jackson, D. A., and Hollaender, A., eds.), Plenum, New York, pp. 791ā€“805.

    Google ScholarĀ 

  24. GuzmĆ”n-Verduzco, L. M., Fonseca, R., and Kaperszotch-Portnoy, Y. M. (1983) Thermoactivation of a periplasmic heat-stable enterotoxin of Escherichia coli. J. Bacteriol. 154, 146ā€“151.

    PubMedĀ  Google ScholarĀ 

  25. So, M. and McCarthy, B. T. (1980) Nucleotide sequence of the bacterial transposon Tn1681 encoding a heat-stable (ST) toxin and its identification in enterotoxigenic coli strains. Proc. Natl. Acad. Sci. USA 77, 4011ā€“4015.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Chapon, C. and Raibaud, O. (1985) Structure of two divergent promoters located in front of the gene encoding pullulanase in Klebsiella pneumoniae and positively reguylated by the malT. product. J. Bacteriol. 164, 639ā€“645.

    PubMedĀ  CASĀ  Google ScholarĀ 

  27. dā€™Enfert, C., Ryter, A., and Pugsely, A. P. (1987) Cloning and expression in Escherichia coli of the Klebsiella pneumoniue genes for production, surface localization and secretion of the lipoprotein pullanase. EMBO J. 6, 3531ā€“3538.

    CASĀ  Google ScholarĀ 

  28. Yanigida, N., Ouozumi, T., and Beppu, T. (1986) Specific excretion of Serratia marcescens protease through the outer membrane of Escherichia coli. J. Bacteriol. 166, 937ā€“944.

    Google ScholarĀ 

  29. Collmer, A., Schoedel, C., Roeder, D. L., Ried, J. L., and Rissler, J. F. (1985) Molecular cloning in Escherichia coli of Erwinia chrysanthemi genes encoding multiple forms of pectate lyase. J. Bacteriol. 161, 913ā€“920.

    PubMedĀ  CASĀ  Google ScholarĀ 

  30. Keen, N.T., Dahlbreck, D., Staskawicz, B., and Belser, W. (1984) Molecular cloning of pectate lyase genes from Erwinia chrysanthemi and their expression in Escherichia coli. J. Bacteriol. 159, 825ā€“831.

    PubMedĀ  CASĀ  Google ScholarĀ 

  31. Lei, S.-P., Lin, H.-C., Hefferman, L., and Wilcox, G. (1985) Cloning of the pectate lyase genes from Erwinia carotovora and their expression in Escherichia coli. Gene 35, 63ā€“70.

    CASĀ  Google ScholarĀ 

  32. Zink, R.T. and Chatterjee, A.K. (1985) Cloning and expression in Escherichia coli of pectinase gene of Erwinia carotovora subsp. carotovora. Appl. Environ. Microbiol. 49, 714ā€“717.

    CASĀ  Google ScholarĀ 

  33. Barras, F., Thurn, K. K., and Chatterjee, A. K. (1986) Export of Erwinia chrysanthemi (EC16) protease by Escherichia coli. FEMS Microbiol. Lett. 34, 343ā€“348.

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Elsinghorst, E. A. (1994) Measurement of invasion by gentamycin resistance. Meth. Enzymol. 236, 405ā€“420.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Lee, C. A. and Falkow, S. (1994) Isolation of hyperinvasive mutants of Salmonella. Meth. Enzymol. 236, 531ā€“545.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. Reed, L., J. and Muench, H. (1938) A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27, 493ā€“497.

    Google ScholarĀ 

  37. Welkos, S. and Oā€™Brien, A. (1994) Determination of median lethal and infectious doses in animal model systems. Meth. Enzymol. 235, 29ā€“39.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Bonnekoh B., Greenhalgh, D. A., Bundman, D. S., Ekhardt, J. N., Longley, M. A., Chen., S. H., et al. (1995) Inhibition of melanoma growth by adenoviral-mediated HSV thymidine kinase gene tranfer in vivo. J. Invest. Derm. 104, 313ā€“317.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. King, I., Feng, M., Lou, X., Lin, S., Bermudes, D., and Zheng, L.-M. (1998) Tumor-targeted Salmonella expressing cytosine deaminase converted 5-fluorocytosine to 5-fluorouricil and inhibited tumor growth in vivo. Ann. Meet. Am. Assoc. Cancer Res., New Orleans, LA, March 28 to April 2, (abstr.).

    Google ScholarĀ 

  40. Liljeqvist, S., Haddad, D., Berzins, K., UhlĆ©n, M., and StĆ„hl, S. (1996) A novel expression system for Salmonella typhimurium allowing high production levels, product secretion and efficient recovery. Biochem. Biophys. Res. Comm. 218, 356ā€“359.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  41. McKnight, S.L. (1980) The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nuc. Acids. Res. 8, 5949ā€“5964.

    ArticleĀ  CASĀ  Google ScholarĀ 

  42. Wagner, M..J., Sharp, J.A., and Summers, W.C. (1981) Nucleotide sequence of the thymidine kinase gene of herpes simplex virus type 1. Proc. Natl. Acad. Sci. USA 78, 1441ā€“1445.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  43. Oā€™Callaghan, D. and Charbit, A. (1990) High efficiency transformation of Salmonella typhimurium and Salmonella typhi by electroporation. Mol. Gen. Genet. 223, 156ā€“158.

    ArticleĀ  CASĀ  Google ScholarĀ 

  44. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor, Cold Spring Harbor.

    Google ScholarĀ 

  45. Summers, W. C. and Summers, W. P. (1977) [125I]deoxycytidine used in a rapid, sensitive, and specific assay for herpes simplex virus type 1 thymidine kinase. J. Virol. 24, 314ā€“318.

    PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Bermudes, D., Low, B., Pawelek, J.M. (2000). Tumor-Targeted Salmonella: Strain Development and Expression of the HSV-tK Effector Gene . In: Walther, W., Stein, U. (eds) Gene Therapy of Cancer. Methods in Molecular Medicineā„¢, vol 35. Humana Press. https://doi.org/10.1385/1-59259-086-1:419

Download citation

  • DOI: https://doi.org/10.1385/1-59259-086-1:419

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-714-4

  • Online ISBN: 978-1-59259-086-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics