Skip to main content

Chemotherapy-Inducible Vector for Gene Therapy of Cancer

  • Protocol
Gene Therapy of Cancer

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 35))

  • 600 Accesses

Abstract

A great variety of viral and nonviral expression systems has been developed and assessed for their ability to transfer genes into somatic cells. In particular, retroviral and adenoviral mediated gene transfer has been extensively studied and improved at least because of their capability to efficiently infect the targeted cells. However, the lack of cell type specificity of viral and nonviral vectors still represents one major obstacle for appropriate and controlled expression of foreign genes. Many attempts have been made to achieve efficient gene delivery by targeting, e.g., retroviral integration via modifications in viral envelope protein sequences, using antibodies as specific mediators in viral infection and pseudotyped viruses, and so on (1, 2, 3, 4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bushman, F. (1995) Targeting retroviral integration. Science 267, 1443–1444.

    Article  PubMed  CAS  Google Scholar 

  2. Friedmann, T. and Yee, J.-K. (1995) Pseudotyped retroviral vectors for studies of human gene therapy. Nature Med. 1, 275–277.

    Article  PubMed  CAS  Google Scholar 

  3. Kasahara, N., Dozy, A. M., and Kan. Y. W. (1994) Tissue-specific targeting of retroviral vectors through ligand-receptor interactions. Science 266, 1373–1376.

    Article  PubMed  CAS  Google Scholar 

  4. Salmons, B. and Günzburg, W. H. (1993) Targeting of retroviral vectors for gene therapy. Hum. Gene Ther. 4, 129–141.

    Article  PubMed  CAS  Google Scholar 

  5. Walther, W. and Stein, U. (1996) Cell type specific and inducible promoters for vectors in gene therapy as an approach for cell targeting. J. Mol. Med. 74, 379–392.

    Article  PubMed  CAS  Google Scholar 

  6. Miller, N. and Whelan, J. (1997) Progress in transcriptionally targeted and regulatable vectors for genetic therapy. Hum. Gene Ther. 8, 803–815.

    Article  PubMed  CAS  Google Scholar 

  7. Boothman, D. A., Lee, I. W., and Sahijdak, W. M. (1994) Isolation of an X-ray-responsive element in the promoter region of tissue-type plasminogen activator: potential uses of X-ray-responsive elements for gene therapy. Radiat. Res. 138 (1Suppl.), S68–71.

    Article  PubMed  CAS  Google Scholar 

  8. Hallahan, D. E., Mauceri, H. J., Seung, L. P., Dunphy, E. J., Wayne, J. D., Hanna, N. N., et al. (1995) Spatial and temporal control of gene therapy using ionizing radiation. Nature Med. 1, 786–791.

    Article  PubMed  CAS  Google Scholar 

  9. Williams, G. T. and Morimoto, R. I. (1990) Maximal stress-induced transcription from the human HSP70 promoter requires interactions with the basal promoter elements independent of the rotational alignment. Mol. Cell. Biol. 10, 3125–3136.

    PubMed  CAS  Google Scholar 

  10. Gazit, G., Kane, S. E., Nichols, P., and Lee, A. S. (1995) Use of the stress-inducible grp78/BiP promoter in targeting high level gene expression in fibrosarcoma in vivo. Cancer Res. 55, 1660–1663.

    PubMed  CAS  Google Scholar 

  11. Dachs, G. U., Patterson, A. V., Firth, J. D., Ratcliffe, P. J., Townsend, K. M. S., Stratford, I. J., and Harris A. L. (1997) Targeting gene expression to hypoxic tumor cells. Nature Med. 3, 515–520.

    Article  PubMed  CAS  Google Scholar 

  12. Blackburn, R. V., Golaforo, S. S., Corry, P. M., and Lee, Y. J. (1998) Adenoviral-mediated transfer of a heat-inducible double suicide gene into prostate carcinoma cells. Cancer Res. 58, 1358–1362.

    PubMed  CAS  Google Scholar 

  13. Chin, K. V., Tanaka, S., Darlington, G., Pastan, I., and Gottesmann, M. M. (1990) Heat shock and arsenite in rease expression of the multidrug resistance (MDR1) gene in human renal carcinoma cells. J. Biol. Chem 256, 221–226.

    Google Scholar 

  14. Chaudhary, P. M. and Roninson, I. B (1992) Activation of MDR1 (p-glycoprotein) gene expression in human cells by protein kinase C agonists. Oncol. Res. 4, 281–290.

    PubMed  CAS  Google Scholar 

  15. Uchiumi, T., Kohno, K., Tanimura, H., Matsuo, K., Sato, S., Uchida Y., and Kuwano, M. (1993) Enhanced expression of the human multidrug resistance 1 gene in response to UV light irradiation. Cell Growth Differ. 4, 147–157.

    PubMed  CAS  Google Scholar 

  16. Licht, T., Fiebig, H. H., Bross, K. J., Herrmann, F., Berger, D. P., Shoemaker, R., and Mertelsmann, R. (1991) Induction of multiple drug resistance during anti-neoplastic chemotherapy in vitro. Int. J. Cancer 49, 630–637.

    Article  PubMed  CAS  Google Scholar 

  17. Chaudhary, P. M. and Roninson, I. B. (1993) Induction of multidrug resistance in human cells by transient exposure to different chemotherapeutic drugs. J. Natl. Cancer Inst. 85, 632–639.

    Article  PubMed  CAS  Google Scholar 

  18. Kohno, K., Sato, S.-I., Takano, H., Matsuo, K.-I., and Kuwano, M. (1989) The direct activation of human multidrug resistance gene (MDR1) by anticancer agents. Biochem. Biophys. Res. Comm. 165, 1415–1421.

    Article  PubMed  CAS  Google Scholar 

  19. Stein, U., Walther, W., and Wunderlich, V. (1994) Point mutations in the mdr1 promoter of human osteosarcomas are associated with in vitro responsiveness to multidrug resistance relevant drugs. Eur. J. Cancer 30A, 1541–1545.

    Article  PubMed  CAS  Google Scholar 

  20. Iwahashi, T., Okochi, E., Ono, K., Sugawara, I., Tsuruo, T., and Mori, S. (1991) Establishment of multidrug resistant human colorectal HCT-15 cell lines and their properties. Anticancer Res. 11, 1309–1312.

    PubMed  CAS  Google Scholar 

  21. Morikawa, K., Walker, S. M., Nakajima, M., Pathak, S., Jessup, J. M., and Fidler I. J. (1988) Influence of organ environment on the growth selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Res. 48, 6863–6871.

    PubMed  CAS  Google Scholar 

  22. Soule, H. D., Vasquez, J., Long, A., Albert, S., and Brennan, M. (1973) A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Cancer Inst. 51, 1409–1416.

    PubMed  CAS  Google Scholar 

  23. Kohno, K., Sato, S.-I., Uchiumi, T., Takano, H., Kato, S., and Kuwano, M. (1990) Tissue specific enhancer of the human multidrg-resistance (MDR1) gene. J. Biol. Chem. 265, 19,690–19,696.

    PubMed  CAS  Google Scholar 

  24. Brenner, C. A., Daniel, S. L., and Adler, R. R. (1989) Cytokine mapping: observation and quantification of cytokine mRNA in small numbers of cells using the polymerase chain reaction, in Cytokines-A Practical Approach (Balkwill, F. R., ed). Oxford University Press, Oxford, pp. 51–59.

    Google Scholar 

  25. Wu, L., Smythe, A. M., Stinson, S. F., Mullendore, L. A., Monks, A., Scudiero, D. A., et al. (1992) Multidrug resistant phenotype of disease-oriented panels of human tumor cell lines used for anticancer drug screening. Cancer Res. 52, 3029–3034.

    PubMed  CAS  Google Scholar 

  26. Walther, W., Fichtner, I., and Uckert, W. (1993) Retrovirus-mediated gene transfer of tumor necrosis factor alpha into colon carcinoma cells generates a growth inhibition. Anticancer Res. 13, 1565–1574.

    PubMed  CAS  Google Scholar 

  27. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, pp. 1.26–1.28.

    Google Scholar 

  28. Walther, W., Wendt, J., and Stein, U. (1997) Employment of the mdr1 promoter for the chemotherapy-inducible expression of therapeutic genes in cancer gene therapy. Gene Ther. 4, 544–552.

    Article  PubMed  CAS  Google Scholar 

  29. Stein, U., Walther, W., and Shoemaker, R. H. (1996) Reversal of multidrug resistance by transduction of cytokine genes into human colon carcinoma cells. J. Natl. Cancer Inst. 88, 1383–1392.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Walther, W., Stein, U., Shoemaker, R.H., Schlag, P.M. (2000). Chemotherapy-Inducible Vector for Gene Therapy of Cancer. In: Walther, W., Stein, U. (eds) Gene Therapy of Cancer. Methods in Molecular Medicine™, vol 35. Humana Press. https://doi.org/10.1385/1-59259-086-1:371

Download citation

  • DOI: https://doi.org/10.1385/1-59259-086-1:371

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-714-4

  • Online ISBN: 978-1-59259-086-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics