Skip to main content

Molecular Detection of Smad2/Smad4 Alterations in Colorectal Tumors

  • Protocol

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 50))

Abstract

The signaling pathways mediated by the transforming growth factor-β (TGF-β) family of factors are implicated in a wide array of biological processes including cell differentiation and proliferation, determination of cell fate during embryogenesis, cell adhesion and cell death. The recent discovery of the SMAD family of signal transducer proteins as mediators of TGF-β relaying signals from cell membrane to nucleus has revolutionized the understanding of the molecular basis of these processes (1,2). To date, at least eight homologues of the Smad genes have been identified and shown to be downstream of the serine/threonine kinase receptors Table 1 ). SMADs are molecules of relative mass 42K-60K composed of two regions of homology at the amino and carboxy terminals of the protein. The activation of SMADs by receptors upon TGF-β binding results in the formation of hetero-oligomeric complexes and translocation to the nucleus where transcription of target genes is effected. However, some of the SMADs apparently inhibit rather than mediate, TGF-β signaling. These inhibitory SMADs are also induced by TGF-β stimulation suggesting that there is an intracellular negative-feedback loop.

Table 1 Human SMAD Genes and Cancers

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Heldin, C-H., Miyazono, K., and Dijke, P. T. (1997) TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465–4171.

    Article  CAS  PubMed  Google Scholar 

  2. Massague, J. (1998) TGF-βeta signal transduction. Annu. Rev. Biochem. 67, 753–791.

    Article  CAS  Google Scholar 

  3. Masuyama. N., Hanafusa. H., Kusakabe, M., Shibuya, H., and Nishida, E. (1999) Identification of two Smad4 proteins in Xenopus. Their common and distinct properties. J. Biol. Chem. 274, 12,163–12,170.

    Article  CAS  PubMed  Google Scholar 

  4. Hata, A., Lagna, G., Massague, J., and Hemmati-Brivanlou, A. (1998) Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev. 12, 186–197.

    Article  CAS  PubMed  Google Scholar 

  5. Roberts, A. B. (1998) Molecular and cell biology of TGF-β. Miner. Electrolyte Metab. 24(2-3), 111–119.

    Article  CAS  PubMed  Google Scholar 

  6. Sporn, M. B. and Roberts, A. B. 1988. Peptide growth factors are multifunctional. Nature 332, 217–219.

    Google Scholar 

  7. Derynck, R., Jarrett, J. A., Chen, E. Y., Eaton, D. H., Bell, J. R., Assoian. R. K., Roberts, A. B., Sporn, M. B., and Goeddel, D. V. (1985) Human transforming growth factor-β complementary DNA sequence and expression in normal and transformed cells. Nature 316, 701–705.

    Article  CAS  PubMed  Google Scholar 

  8. Arrick, B. A., Lopez, A. R., Elfman, F., Ebner, R., Damsky, C. H., and Derynck, R. (1992) Altered metabolic and adhesive properties and increased tumorigenesis associated with increased expression of transforming growth factor beta 1. J. Cell Biol. 118, 715–726.

    Article  CAS  PubMed  Google Scholar 

  9. Glynne-Jones, E., Harper, M. E., Goddard, L., Eaton, C. L., Matthews, P. N., and Griffiths, K. (1994) Transforming growth factor beta 1 expression in benign and malignant prostatic tumors. Prostate 25, 210–218.

    Article  CAS  PubMed  Google Scholar 

  10. Guise, T. A. and Mundy, G. R. (1998) Cancer and bone. Endocr. Rev. 19, 18–54.

    Article  CAS  PubMed  Google Scholar 

  11. Sporn, M. B. and Roberts, A. B. (1985) Autocrine growth factors and cancer. Nature 313, 745–747.

    Article  CAS  PubMed  Google Scholar 

  12. Roberts, A. B. and Sporn, M. B. (1993) Physiological actions and clinical applications of transforming growth factor-beta (TGF-βeta). Growth Factors 8, 1–9.

    Article  CAS  PubMed  Google Scholar 

  13. Kim, I. Y., Ahn, H.-J., Zelner, D. J., Shaw, J. W., Sensibar, J. A., Kim, J-.H., Kato, M., and Lee, C. (1996) Genetic change in transforming growth factor β (TGF-β) receptor type I gene correlates with insensitivity to TGF-β1 in human prostate cancer cells. Cancer Res. 56, 44–48.

    CAS  PubMed  Google Scholar 

  14. Kimchi, A., Wang, X.-F., Weinberg, R., Cheifetzn, S., and Massague, J. (1988) Absence of TGF-β receptors and growth inhibitory responses in retinoblastoma cells. Science 240, 196–199.

    Article  CAS  PubMed  Google Scholar 

  15. Park, K., Kim, S.-J., Bang. Y.-J., Park, J.-G., Kim, N. K., Roberts, A. B., and Sporn, M. B. (1994) Genetic changes in the transforming growth factor beta (TGF-β) type II receptor gene in human gastric cancer cells: correlation with sensitivity to growth inhibition by TGF-β. Proc. Natl. Acad. Sci. USA 91, 8772–8776.

    Article  CAS  PubMed  Google Scholar 

  16. Sun, L., Wu, G., Willson, J. K. V., Zborowska, E., Yang, J., Rajkarunanayake, I., Wang, J., Centry, L. E., Wang, X.-F., and Brattain, M. G. (1994) Expression of transforming growth factor beta type II receptor leads to reduced malignancy in human breast cancer MCF-7 cells. J. Biol. Chem. 269, 26,449–26,455.

    CAS  PubMed  Google Scholar 

  17. Markowitz, S., Wang, J., Myeroff, L., Parsons, R., Sun, L. Z., Lutterbaough, J., Fan, R. S., Zborowska, E., Kinzler, K. W., Vogelstein, B., Brattain, M. G., and Willson, J. K. V. (1995) Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability Science 268, 1336–1338.

    Article  CAS  PubMed  Google Scholar 

  18. Parsons, R., Myeroff, L. L., Liu, B., Willson, J. K., Markowitz, S. D., Kinzler, K. W., and Vogelstein, B. (1995) Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res. 55, 5548–5550.

    CAS  PubMed  Google Scholar 

  19. Grady, W. M., Myeroff, L. L., Swinler, S. E., Rajaput, A., Thiagalingam, S., Lutterbaugh, J. D., Neumann, A., Brattain, M. G., Chang, J., Kim, S.-J., Kinzler, K. W., Vogelstein, B., Willson, J. K. V., and Markowitz, S. (1999) Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers Cancer Res. 59, 320–324.

    CAS  PubMed  Google Scholar 

  20. Nagatake, M., Takagi, Y., Osada, H., Uchida, K., Mitsudomi, T., Saji, S., Shimokawa, K., Takahashi, T., and Takahashi, T. (1996) Aberrant hypermethylation at the bcl-2 locus at 18q21 in human lung cancers. Cancer Res. 56, 2718–2720.

    CAS  PubMed  Google Scholar 

  21. Uchida, K., Nagatake, M., Osada, H., Yatabe, Y., Kondo, M., Mitsudomi, T., Matsuda, A., Takahashi, T., and Takahashi, T. (1996) Somatic in vivo alterations of the JV18-1 gene at 18q21 in human lung cancers. Cancer Res. 56, 5583–5585.

    CAS  PubMed  Google Scholar 

  22. Thiagalingam, S., Lengauer, C., Leach, F. S., Schutte, M., Hahn, S. A., Overhauser, J., Willson, J. K. V., Markowitz, S., Hamilton, S. R., Kern, S. E., Kinzler, K. W., and Vogelstein, B. (1996) Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nature Genet. 13, 343–346.

    Article  CAS  PubMed  Google Scholar 

  23. Schutte, M., Hruban, R. H., Hedrick, L., Cho, K. R., Nadasdy, G. M., Weinstein, C. L., Bova, G. S., Isaacs, W. B., Cairns, P., Nawroz, H., Sidransky, D., Casero, R. A., Jr., Meltzer, P. S., Hahn, S. A., and Kern, S. E. (1996) DPC4 gene in various tumor types. Cancer Res. 56, 2527–2530.

    CAS  PubMed  Google Scholar 

  24. Riggins, J. G., Kinzler, K. W., Vogelstein, B., and Thiagalingam, S. (1997) Frequency of Smad gene mutations in human cancers. Cancer Res. 57, 2578–2580.

    CAS  PubMed  Google Scholar 

  25. Hahn, S. A, Schutte, M., Hoque, A. T., Moskaluk, C. A., da Costa, L. T., Rozenblum, E., Weinstein, C. L., Fischer, A., Yeo, C. J., Hruban, R. H, and Kern, S. E. (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271, 350–353.

    Article  CAS  PubMed  Google Scholar 

  26. Riggins, J. G., Thiagalingam, S., Rozenblum, E., Weinstein, C. L., Kern, S. E., Hamilton, S. R., Willson, J. K. V., Markowitz, S., Kinzler, K. W., and Vogelstein, B. (1996) MAD-related genes in the human. Nature Genet. 13, 347–349.

    Article  CAS  PubMed  Google Scholar 

  27. Vogelstein, B., Fearon, E. R., Hamilton, S. R., Kern, S. E., Preisinger, A., Leppert, M., Nakamura, Y., White, R., Smith, A. M. M., and Boss, J. L. (1988) Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525–532.

    Article  CAS  PubMed  Google Scholar 

  28. Yogota, J. and Sugimura, T. (1993) Multiple steps in carcinogenesis involving alterations of multiple tumor suppressor genes. FESEB J. 7, 920–925.

    Google Scholar 

  29. Ueda, T., Komiya, A., Emi, M., Suzuki, H., Shiraishi, T., Yatani, R., Masai, M., Yasuda, K., and Ito, H. (1997) Allelic losses on 18q21 are associated with progression and metastasis in human prostate cancer. Genes Chromosom. Cancer 20, 140–147.

    Article  CAS  PubMed  Google Scholar 

  30. Amendt, C., Schirmacher, P., Weber, H., and Blessing, M. (1998) Expression of a dominant negative type II TGF-β receptor in mouse skin results in an increase in carcinoma incidence and acceleration of carcinoma development. Oncogene 17, 25–34.

    Article  CAS  PubMed  Google Scholar 

  31. Takei, K., Kohno, T., Hamada, K., Takita, J., Noguchi, M., Matsuno, Y., Hirohashi, S., Uezato, H., and Yokota, J. (1998) A novel tumor suppressor locus on chromosome 18q involved in the development of human lung cancer. Cancer Res. 58, 3700–3705.

    CAS  PubMed  Google Scholar 

  32. Eppert, K., Scherer, S. W., Ozcelik, H., Pirone, R., Hoodless, P., Kim, H., Tsui, L. C., Bapat, B., Gallinger, S., Andrulis, I. L., Thomsen, G. H., Wrana, J. L., and Attisano, L. (1996) MADR2 maps to 18q21 and encodes a TGF-β-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86, 543–552.

    Article  CAS  PubMed  Google Scholar 

  33. Jonson, T., Gorunova, L., Dawiskiba, S., Andren-Sandberg, A., Stenman, G., ten Dijke, P., Johansson, B. and M. Hoglund. (1999) Molecular analyses of the 15q and 18q SMAD genes in pancreatic cancer. Genes Chromosomes Cancer 24, 62–71.

    Article  CAS  PubMed  Google Scholar 

  34. Nakao, A., Afrakhte, M., Moren, A., Nakayama, T., Christian, J. L., Heuchel, R., Itoh, S., Kawabata, M., Heldin, N. E., Heldin, C. H., and ten Dijke, P. (1997) Identification of Smad7, a TGF-β-inducible antagonist of TGF-β signalling. Nature 389, 631–635.

    Article  CAS  PubMed  Google Scholar 

  35. Watanabe, T. K., Suzuki, M., Omori, Y., Hishigaki, H., Horie, M., Kanemoto, N., Fujiwara, T., Nakamura, Y., and Takahashi, E. (1997) Cloning and characterization of a novel member of the human Mad gene family (MADH6). Genomics 42, 446–451.

    Article  CAS  PubMed  Google Scholar 

  36. Miyaki, M, Iijima, T., Konishi, M., Sakai, K., Ishii, A., Yasuno, M., Hishima, T., Koike, M., Shitara, N., Iwama, T., Utsunomiya, J., Kuroki, T., and Mori, T. (1999) Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene 18, 3098–3103.

    Article  CAS  PubMed  Google Scholar 

  37. Bartsch, D., Hahn, S. A., Danichevski, K. D., Ramaswamy, A., Bastian, D., Galehdari, H., Barth, P., Schmiegel, W., Simon, B., and Rothmund, M. (1999) Mutations of the DPC4/Smad4 gene in neuroendocrine pancreatic tumors. Oncogene 18, 2367–2371.

    Article  CAS  PubMed  Google Scholar 

  38. Hoque, A. T., Hahn, S. A., Schutte, M., and Kern, S. E. (1997) DPC4 gene mutation in colitis associated neoplasia. Gut 40, 120–122.

    CAS  PubMed  Google Scholar 

  39. Kim, S. K., Fan, Y., Papadimitrakopoulou, V., Clayman, G., Hittelman, W. N., Hong, W. K., Lotan, R., and Mao, L. (1996) DPC4, a candidate tumor suppressor gene, is altered infrequently in head and neck squamous cell carcinoma. Cancer Res. 56, 2519–2521.

    CAS  PubMed  Google Scholar 

  40. Fearon, E. R. and Vogelstein, B. (1990) A genetic model for colorectal tumori-genesis. Cell 61, 759–767.

    Article  CAS  PubMed  Google Scholar 

  41. Knudson, A. G. (1996) Hereditary cancer: two hits revisited. J. Cancer Res. Clin. Oncol. 122, 135–140.

    Article  CAS  PubMed  Google Scholar 

  42. Powell, S. M., Peterson, G. M., Krush, A. J., Booker, S., Jen, J., Giardiello, F. M., Hamilton, S. R., Vogelstein, B., and Kinzler, K. W. Molecular diagnosis of familial adenomatous polyposis. N. Engl. J. Med. 329, 1982–1987.

    Google Scholar 

  43. Willson, J. K. V., Bittner, G. N., Oberley, T. D., Meisner, L. F., and Weese, J. L. (1987) Cell culture of human colon adenomas and carcinomas. Cancer Res. 47, 2704–2713.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Thiagalingam, S. (2001). Molecular Detection of Smad2/Smad4 Alterations in Colorectal Tumors. In: M., S. (eds) Colorectal Cancer. Methods in Molecular Medicine, vol 50. Humana Press. https://doi.org/10.1385/1-59259-084-5:149

Download citation

  • DOI: https://doi.org/10.1385/1-59259-084-5:149

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-767-0

  • Online ISBN: 978-1-59259-084-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics