Skip to main content

DNA As an Adjuvant

  • Protocol
  • 1259 Accesses

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 42))

Abstract

DNA is a complex macromolecule with immunological properties that depend on base sequence. Although mammalian DNA is immunologically inert, DNA from bacteria has potent immunostimulatory properties that result from short sequence motifs called CpG motifs or immunostimulatory sequences (ISS). These motifs, which have the general structure of two 5′ purines, an unmethylated CpG motif, and two 3′ pyrimidines, occur much more commonly in bacterial DNA than mammalian DNA because of two main factors: CpG suppression and the frequent methylation of cytosine in this position in mammalian DNA (1). As a result, bacterial DNA displays (in code-like fashion) sequences emblematic of foreignness. This code allows DNA to function as a danger signal in the induction of innate immunity (2).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pisetsky, D. S. (1996) Immune activation by bacterial DNA: a new genetic code. Immunity 5, 303–310.

    Article  PubMed  CAS  Google Scholar 

  2. Matzinger, P. (1994) Tolerance, danger, and the extended family. Ann. Rev. Immunol. 12, 991–1045.

    Article  CAS  Google Scholar 

  3. Yamamoto, S., Yamamoto, T., Shimada, S., Kuramoto, E., Yano, O., Katoka, T., et al. (1992) DNA from bacteria, but not from vertebrates, induces interferons, activates natural killer cells and inhibits tumor growth. Microbiol. Immunol. 36, 983–997.

    PubMed  CAS  Google Scholar 

  4. Klinman, D. M., Yi, A-K., Beaucage, S. L., Conover, J., and Krieg, A. M. (1996) CpG motifs present in bacterial DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon γ. Proc. Natl. Acad. Sci. USA 93, 2879–2883.

    Article  PubMed  CAS  Google Scholar 

  5. Sparwasser, T., Miethke, T., Lipford, G., Erdmann, A., Hacker, H., Heeg, K., et al. (1997) Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor-α-mediated shock. Eur. J. Immunol. 27, 1671–1679.

    Article  PubMed  CAS  Google Scholar 

  6. Krieg, A. M., Yi, A., Matson, S., Waldschmidt, T. J., Bishop, G. A., Teasdale, R., et al. (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 345–349.

    Article  Google Scholar 

  7. Stein, C. A., Subasinghe, C., Shinozuka, K., and Cohen, J. S. (1988) Physio-chemical properties of phosphorothioate oligodeoxynucleotides. Nucl. Acids Res. 16, 3209–3221.

    Article  PubMed  CAS  Google Scholar 

  8. Liang, H., Nishioka, Y., Reich, C. F., Pisetsky, D. S., and Lipsky, P. E. (1996) Activation of human B cells by phosphorothioate oligodeoxynucleotides. J. Clin. Invest. 98, 1119–1129.

    Article  PubMed  CAS  Google Scholar 

  9. Montieth, D. K., Henry, S. P., Howard, R. B., Flournoy, S., Levin, A. A., Bennett, C. F., et al. (1997) Immune stimulation-a class effect of phosphorothioate oligodeoxynucleotides in rodents. Anti-Cancer Drug Design 12, 421–432.

    Google Scholar 

  10. Vogel, F. R. and Sarver, N. (1995) Nucleic acid vaccines. Clin. Microbiol. Rev. 8, 406–410.

    PubMed  CAS  Google Scholar 

  11. Corr, M., Lee, D. J., Carson, D. A., and Tighe, H. (1996) Gene vaccination with naked plasmid DNA: mechanism of CTL priming. J. Exp. Med. 184, 1555–1560.

    Article  PubMed  CAS  Google Scholar 

  12. Leclerc, C., Deriaud, E., Rojas, M., and Whalen, R. G. (1997) The preferential induction of a Th1 immune response by DNA-based immunization is mediated by the immunostimulatory effect of plasmid DNA. Cell. Immunol. 179, 97–106.

    Article  PubMed  CAS  Google Scholar 

  13. Sato, Y., Roman, M., Tighe, H., Lee, D., Corr, M., Nguyen, M-D., et al. (1996) Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273, 352–354.

    Article  PubMed  CAS  Google Scholar 

  14. Mor, G., Klinman, D. M., Shapiro, S., Hagiwara, E., Sedegah, M., Norman, J. A., et al. (1995) Complexity of the cytokine and antibody response elicited by immunizing mice with Plasodium yoelii circumsporozoite protein plasmid DNA. J. Immunol. 155, 2039–2046.

    PubMed  CAS  Google Scholar 

  15. Feltquate, D. M., Heaney, S., Webster, R. G., and Robinson H. L. (1997) Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J. Immunol. 158, 2278–2284.

    PubMed  CAS  Google Scholar 

  16. Hsieh, C. S., Macatonia, S. E., O’ Garra, A., and Murphy, K. M. (1995) T cell genetic background determines default T helper phenotype development in vitro. J. Exp. Med. 181, 713–721.

    Article  PubMed  CAS  Google Scholar 

  17. Mashiba, H., Matsunaga, K., Tomoda, H., Furusawa, M., Jimi, S., and Tokunaga, T. (1988) In vitro augmentation of natural killer activity of peripheral blood cells from cancer patients by a DNA fraction from Mycobacterium bovis BCG. Japan. J. Med. Sci. Biol. 41, 197–202.

    CAS  Google Scholar 

  18. Davis, H. L., Weeranta, R., Waldschmidt, T. J., Tygrett, L., Schorr, J., and Kreig, A. M. (1998) CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. J. Immunol. 160, 870–876.

    PubMed  CAS  Google Scholar 

  19. Hsu, C-H., Chua, K-Y., Tao, M-H., Lai, Y-L., Wu, H-D., Huang S-K., et al. (1996) Immunoprophylaxis of allergen-induced immunoglobulin E synthesis and airway hyperresponsiveness in vivo by genetic immunization. Nat. Med. 2, 540–544.

    Article  PubMed  CAS  Google Scholar 

  20. Waisman, A., Ruiz, P. J., Hirschberg, D. L., Gelman, A., Oksenberg, J. R., Brocke, S., et al. (1996) Suppressive vaccination with DNA encoding a variable region gene of the T-cell receptor prevents autoimmune encephalomyelitis and activates Th2 immunity. Nat. Med. 2, 899–905.

    Article  PubMed  CAS  Google Scholar 

  21. Kimura, Y., Sonehara, K., Kuramoto, E., Makino, T., Yamamoto, S., Yamamoto, T., et al. (1994) Binding of oligoguanylate to scavenger receptors is required for oligonucleotides to augment NK cell activity and induce IFN. J. Biochem. 116, 991–994.

    PubMed  CAS  Google Scholar 

  22. Pearson, A. M., Rich, A., and Krieger, M. (1993) Polynucleotide binding to mac-rophage scavenger receptors depends on the formation of base-quartet-stabilized four-stranded helices. J. Biol. Chem. 268, 3546–3554.

    PubMed  CAS  Google Scholar 

  23. Lipford, G. B., Sparwasser, T., Bauer, M., Zimmermann, S., Koch, E-S., Heeg, K., etal. (1997) Immunostimulatory DNA: sequence-dependent production of potentially harmful or useful cytokines. Eur. J. Immunol. 27, 3420–3426.

    Article  PubMed  CAS  Google Scholar 

  24. Zimmermann, S., Egeter, O., Hausmann, S., Lipford, G. B., Rocken, M., Wagner, H., et al. (1998) CpG oligonucleotides trigger protective and curative Th1 responses in lethal murine leishmaniasis. J. Immunol. 160, 3627–3630.

    PubMed  CAS  Google Scholar 

  25. Weiner, G. J., Liu, H-M., Wooldridge, J. E., Dahle, C. E., and Kreig, A. M. (1997) Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization. Proc. Natl. Acad. Sci. USA. 94, 10,833–10,837.

    Article  PubMed  CAS  Google Scholar 

  26. Sun, S., Kishimoto, H., and Sprent, J. (1998) DNA as an adjuvant: capacity of insect DNA and Synthetic oligodeoxynucleotides to augment T cell responses to specific antigen. J. Exp. Med. 187, 1145–1150.

    Article  PubMed  CAS  Google Scholar 

  27. Mor, G., Single, M., Steinberg, D. A., Hoffman, S. L., Okuda, K., and Klinman, D. (1997) Do DNA vaccines induce autoimmune disease? Human Gene Therapy 8, 293–300.

    Article  PubMed  CAS  Google Scholar 

  28. Gilkeson, G. S., Ruiz, P., Howell, D., Lefkowith, J. B., and Pisetsky, D. S. (1993) Induction of immune-mediated glomerulonephritis in normal mice immunized with bacterial DNA. Clin. Immunol. Immunopath. 68, 283–292.

    Article  CAS  Google Scholar 

  29. D’Andrea, A., Rengaraju, M., Valiante, N. M., Chehimi, J., Kubin, M., Aste, M., et al. (1992) Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells. J. Exp. Med. 176, 1387–1398.

    Article  PubMed  Google Scholar 

  30. Halpern, M. D., Kurlander, R. J., and Pisetsky, D. S. (1996) Bacterial DNA induces murine interferon gamma production by stimulation of interleukin-12 and tumor necrosis factor alpha. Cell. Immunol. 167, 72–78.

    Article  PubMed  CAS  Google Scholar 

  31. Wicks, I. P., Howell, M. L., Hancock, T., Kohsaka, H., Olee, T., and Carson, D. A. (1995) Bacterial lipopolysaccharide copurifies with plasmid DNA: implications for animal models and human gene therapy. Human Gene Therapy 6, 317–323.

    Article  PubMed  CAS  Google Scholar 

  32. Sparwasser, T., Miethke, T., Lipford, G., Borschert, K., Hacker, H., Heeg, K., et al. (1997) Bacterial DNA causes septic shock. Nature 386, 336–337.

    Article  PubMed  CAS  Google Scholar 

  33. Mouthon, M-A., Mitjavila, M-T., Marquet, J., Vainchenker, W., and Wendling, F. (1994) Erroneous results of 3H-thymidine incorporation are related to position of thymidine residues in oligodeoxynucleotides. Exp. Hematology. 22, 384–387.

    CAS  Google Scholar 

  34. Manickan, E., Yu, Z., and Rouse, B. T. (1997) DNA Immunization of neonates induces immunity despite the presence of maternal antibody. J. Clin. Invest. 100, 2371–2375.

    Article  PubMed  CAS  Google Scholar 

  35. Bot, A., Bot, S., Garcia-Sastre, A., and Bona, C. (1996) DNA immunization of newborn mice with a plasmid-expressing nucleoprotein of influenza virus. Viral Immunol. 9, 207–210.

    Article  PubMed  CAS  Google Scholar 

  36. Huygen, K., Content, J., Denis, O., Montgomery, D. L., Yawman, A. M., Deck, R. R., et al. (1996) Immunogenicity and protective efficacy of a tuberculosis DNA vaccine. Nat. Med. 2, 893–898.

    Article  PubMed  CAS  Google Scholar 

  37. Hoffman, S. L., Doolan, D. L., Sedegah, M., Gramzinski, R., Wang, H., Gowda, K., et al. (1995) Nucleic acid malaria vaccines. Ann. NY Acad. Sci. 772, 88–94.

    Article  PubMed  CAS  Google Scholar 

  38. Xu, D. and Liew, F. Y. (1995) Protection against leishmaniasis by injection of DNA encoding a major surface glycoprotein, gp63, of L.major. Immunology 84, 173–176.

    PubMed  CAS  Google Scholar 

  39. Slater, J. E., Perry, J. E., Zhang, Y. J., Arthur-Smith, A., and Colberg-Poley, A. (1997) A DNA vaccine inhibits IgE responses to the latex allergen Hev b 5 in mice. J. Allergy Clin. Immunol. 99, S504.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Neujahr, D.C., Pisetsky, D.S. (2000). DNA As an Adjuvant. In: O’Hagan, D.T. (eds) Vaccine Adjuvants. Methods in Molecular Medicine™, vol 42. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-083-7:299

Download citation

  • DOI: https://doi.org/10.1385/1-59259-083-7:299

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-735-9

  • Online ISBN: 978-1-59259-083-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics