Transcutaneous Immunization

  • Gregory M. Glenn
  • Tanya Scharton-Kersten
  • Russell Vassell
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 42)


Transcutaneous immunization (TCI), the introduction of antigens using a topical application to intact skin, is a new technology that has both practical and immunological merits. Practically speaking, a needle-free method of vaccine delivery will decrease the risk of needle-borne diseases, reduce the complications related to physical skin penetration, improve access to vaccination by eliminating the need for trained personnel and sterile equipment, and provide a simple means for multivalent or multiple boosting immunization. The immunological implications of TCI are profound as this technique appears to target highly accessible antigen presenting cells (APC) in the skin that can be exploited for a variety of immune outcomes. It has been our experience that TCI can be reliably and reproducibly conducted with a variety of antigens to induce potent and functional immune responses. Thus, this new method may significantly impact both the delivery of vaccines and open new possibilities for manipulation of the immune response.


Stratum Corneum Cholera Toxin Vaccine Antigen Tetanus Toxin Diphtheria Toxoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lycke, N. (1997) The mechanism of cholera toxin adjuvanticity. Res. Immunol. 148, 504–520.PubMedCrossRefGoogle Scholar
  2. 2.
    Snider, D. P. (1995) The mucosal adjuvant activities of ADP-ribosylating bacterial enterotoxins. Crit. Rev. Immunol. 15, 317–348.PubMedGoogle Scholar
  3. 3.
    Elson, C. O. and Ealding, W. (1984) Cholera toxin feeding did not induce oral tolerance in mice and abrogated oral tolerance to an unrelated protein antigen. J. Immunol. 133, 2892–2897.PubMedGoogle Scholar
  4. 4.
    Dickinson, B. L. and Clemens, J. D. (1995) Dissociation of Escherichia coliheat-labile enterotoxin adjuvanticity from ADP-ribosyltransferase activity. Infect. Immun. 63, 1617–1623.PubMedGoogle Scholar
  5. 5.
    Lobet, Y., Cluff, C. W., and Cieplak, W. (1991) Effect of site-directed mutagenic alterations on ADP-ribosyltransferase activity of the A subunit of Escherichia coli heat-labile enterotoxin. Infect. Immun. 59, 2870–2879.PubMedGoogle Scholar
  6. 6.
    Holmgren, J., Svennerholm, A-M., Jertborn, M., Clemens, J., Sack, D. A., Salenstedt, R., and Wigzell, H. (1992) An oral B subunit: whole cell vaccine against cholera. Vaccine 10, 911–914.PubMedCrossRefGoogle Scholar
  7. 7.
    Tamura, S., Funato, H., Nagamine, T., Aizawa, C., and Kurata, T. (1989) Effectiveness of cholera toxin B subunit as an adjuvant for nasal influenza vaccination despite pre-existing immunity to CTB. Vaccine 7, 503–505.PubMedCrossRefGoogle Scholar
  8. 8.
    Glenn, G. M., Rao, M., Matyas, G. R., and Alving, C. R. (1998) Skin immunization made possible by cholera toxin. Nature 391, 851.PubMedCrossRefGoogle Scholar
  9. 9.
    Kripke, M. L., Munn, C. G., Jeevan, A., Tang, J. M., and Bucana, C. (1990) Evidence that cutaneous antigen-presenting cells migrate to regional lymph nodes during contact sensitization. J. Immunol. 145, 2833–2838.PubMedGoogle Scholar
  10. 10.
    News and views (1998) Nature Medicine 4, 672.CrossRefGoogle Scholar
  11. 11.
    Udey, M. C. (1997) Cadherins and Langerhans cell immunobiology. Clin. Exp. Immunol. 107(Suppl. 1), 6–8.PubMedGoogle Scholar
  12. 12.
    Roberts, M. S. and Walker, M. (1993) Water the most natural penetration enhancer, in Pharmaceutical Skin Penetration Enhancement (Walters, K. A. and Hadgraft, J., eds.), Marcel Dekker, New York, pp. 1–30.Google Scholar
  13. 13.
    Holbrook, K. A. and Odland, D. F. (1974) Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis. J. Invest. Dermatol. 62, 415–422.CrossRefGoogle Scholar
  14. 14.
    Berman, B., Chen, V. L., France, D. S., Dotz, W. I., and Petroni, G. (1983) Anatomical mapping of epidermal Langerhans cells densities in adults. Br. J. Dermatol. 109, 553–558.PubMedCrossRefGoogle Scholar
  15. 15.
    Bergstresser, P. R., Fletcher, C. R., and Streilein, J. W. (1980) Surface densities of Langerhans cells in relation to rodent epidermal sites with special immunologi-cal properties. J. Invest. Dermatol. 74, 77–80.PubMedCrossRefGoogle Scholar
  16. 16.
    Schweizer, J. (1980) Langerhans cell-free regions in orthokeratinizing sole-of-foot epidermis of the adult mouse. Arch. Dermatol. Res. 268, 157–166.PubMedCrossRefGoogle Scholar
  17. 17.
    Fisher’s Contact Dermatitis, 4th ed. (1995) (Rietschel, R. L. and Fowler, J. F., eds.), Williams & Wilkins, Baltimore, MD, p. 2.Google Scholar
  18. 18.
    Glenn, G. M., Scharton-Kersten, T., Vassell, R., Matyas, G. R., and Alving, C. R. (1999) Transcutaneous immunization using bacterial ADP-ribosylating exotoxins as antigens and adjuvants. Infect. Immun. 67, 1000–1006.Google Scholar
  19. 19.
    Glenn, G. M., Scharton-Kersten, T., Vassell, R., Mallet, C. P., Hale, T. L., and Alving, C. R. (1998) Transcutaneous immunization with cholera toxin protects mice against lethal mucosal toxin challenge. J. Immunol. 161, 3212–3214.Google Scholar
  20. 20.
    Fairweather, N. F., Lyness, V. A., and Maskell, D. J. (1987) Immunization of mice against tetanus with fragments of tetanus toxin synthesized in Escherichia coli. Infect. Immun. 55, 2541–2545.Google Scholar
  21. 21.
    McComb, J. A. (1964) The prophylactic dose of homologous tetanus antitoxin. N. Engl. J. Med. 270, 175–178.PubMedCrossRefGoogle Scholar
  22. 22.
    Schneerson, R., Robbins, J. B., Taranger, J., Lagergard, T., and Trollfors, B. (1996) A toxoid vaccine for pertussis as well as diphtheria? Lessons to be relearned. Lancet 348, 1289–1292.PubMedCrossRefGoogle Scholar
  23. 23.
    Goldblatt, D., Vaz, A. R., and Miller, E. (1998) Antibody avidity as a surrogate maker of successful priming by Haemophilus influenzae type b conjugate vaccines following infant immunization. J. Infect. Dis. 177, 1112–1115.PubMedCrossRefGoogle Scholar
  24. 24.
    Paul, A. and Cevc, G. (1995) Noninvasive administration of protein antigens: Transdermal immunization with bovine serum albumin in transferasomes. Vaccine Res. 3, 145–164.Google Scholar
  25. 25.
    Tang, D. C., Shi, Z., and Curiel, D. T. (1997) Vaccination onto bare skin. Nature 388, 729–730.PubMedCrossRefGoogle Scholar
  26. 26.
    Wang, L., Lin, J., Hsieh, K., and Lin, R. (1996) Epicutaneous exposure of protein antigen indices a predominant Th2-like response with high IgE production in mice. J. Immunol. 156, 4077–4082.PubMedGoogle Scholar
  27. 27.
    Scharton-Kersten, T., Glenn, G. M., Vassell, R., Yu, J., Walwender, D., and Alving, C. R. (1999) Principles of transcutaneous immunization using cholera toxin as an adjuvant. Vaccine 17(Suppl), 537–543.CrossRefGoogle Scholar
  28. 28.
    Hammond, S. A., Tsonis, C., Sellins, K., Rushlow, K., Scharton-Kersten, T., Colditz, I., and Glenn, G. M. (2000) Transcutaneous immunization of domestic animals: opportunities and challenges. Adv. Drug Delivery Rev., in press.Google Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Gregory M. Glenn
    • 1
  • Tanya Scharton-Kersten
    • 1
  • Russell Vassell
    • 1
  1. 1.Department of Membrane BiochemistryWalter Reed Army Institute of ResearchWashington

Personalised recommendations